Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Deletion of β-catenin impairs T cell development

Abstract

T cells encounter two main checkpoints during development in the thymus. These checkpoints are critically dependent on signals derived from the thymic microenvironment as well as from the pre-T cell receptor (pre-TCR) and the αβ TCR. Here we show that T cell–specific deletion of β-catenin impaired T cell development at the β-selection checkpoint, leading to a substantial decrease in splenic T cells. In addition, β-catenin also seemed to be a target of TCR-CD3 signals in thymocytes and mature T cells. These data indicate that β-catenin-mediated signals are required for normal T cell development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: T cell–specific deletion of the gene encoding β-catenin (Catnb).
Figure 2: T cell–specific deletion of Catnb leads to decreased splenic T cell numbers.
Figure 3: β-catenin deletion blocks T cell development.
Figure 4: The DN3-to-DN4 transition is blocked in β-catenin-deficient mice.
Figure 5: β-catenin regulates cell cycle status of DN4 but not DN3 thymocytes.
Figure 6: TCR signals induce nuclear β-catenin.

Similar content being viewed by others

References

  1. Sen, J. Signals for T cell maturation Cell. Mol. Biol. 47, 197–215 (2001).

    CAS  PubMed  Google Scholar 

  2. Anderson, G. & Jenkinson, E.J. Lymphostromal interactions in thymic development and function. Nat. Res. Immunol. 1, 31–40 (2001).

    Article  CAS  Google Scholar 

  3. Petrie, H.T. Role of thymic structure and stromal composition in steady-state post-natal T cell production. Immunol. Rev. 189, 8–19 (2002).

    Article  CAS  Google Scholar 

  4. Borowski, C. et al. On the brink of becoming a T cell. Curr. Opin. Immunol. 2, 200–206 (2002).

    Article  Google Scholar 

  5. Hoffman, E.S. et al. Productive T-cell receptor β-chain gene rearrangement: coincident regulation of cell cycle and clonality during development in vivo. Genes Dev. 10, 948–962 (1996).

    Article  CAS  Google Scholar 

  6. Moore, T.A. & Zlotnik, A.T. T cell lineage commitment and cytokine responses of thymic progenitors. Blood 86, 1850–1860 (1995).

    CAS  PubMed  Google Scholar 

  7. Di Santo, J.P. et al. Common cytokine receptor γ chain and the pre-TCR provide independent but critically overlapping signals in early αβ T cell development. J. Exp. Med. 189, 563–574 (1999).

    Article  CAS  Google Scholar 

  8. Mulroy, T.M., McMahon, J.A., Burakoff, S.J., McMahon, A.P. & Sen, J. Wnt-1 and Wnt-4 regulate thymic cellularity. Eur. J. Immunol. 32, 967–971 (2002).

    Article  CAS  Google Scholar 

  9. Petrie, H.T., Tourigny, M., Burtrum, D.B. & Livac, F. Precursor thymocyte proliferation and differentiation are controlled by signals unrelated to the pre-TCR. J. Immunol. 165, 3094–3098 (2000).

    Article  CAS  Google Scholar 

  10. Singer, A. New perspectives on a developmental dilemma: the kinetic signaling model and the importance of signal duration for the CD4/CD8 lineage decision. Curr. Opin. Immunol. 2, 207–215 (2002).

    Article  Google Scholar 

  11. Germain, R.N. T-cell development and CD4-CD8 lineage decision. Nat. Rev. Immunol. 2, 309–322 (2002).

    Article  CAS  Google Scholar 

  12. Liu, C. et al. Control of β-catenin phosphorylation degradation by dual kinase mechanism. Cell 108, 837–847 (2002).

    Article  CAS  Google Scholar 

  13. Schwarz-Romond, T. et al. The ankyrin repeat protein Diversin recruits Casein kinase I epsilon to the β-catenin degradation complex and acts in both canonical Wnt and Wnt/JNK signaling. Genes Dev. 16, 2073–2084 (2002).

    Article  CAS  Google Scholar 

  14. Behhrens, J. et al. Functional interaction of β-catenin with the transcription factor LEF-1. Nature 382, 638–642 (1996).

    Article  Google Scholar 

  15. Bienz, M. & Clevers H. Armadillo/β-catenin signals in the nucleus – proof beyond a reasonable doubt? Nat. Cell Biol. 5, 179–182 (2003).

    Article  CAS  Google Scholar 

  16. Verbeek, S. et al. An HMG-box-containing T-cell factor required for thymocyte differentiation. Nature 6517, 70–4 (1995).

    Article  Google Scholar 

  17. Okamura, R.M. et al. Redundant regulation of T cell differentiation and TCRα gene expression by the transcription factors LEF-1 and TCF-1. Immunity 1, 11–20 (1998).

    Article  Google Scholar 

  18. Ioannidis, V., Beermann, F., Clevers, H. & Held, W. The β-catenin-TCF-1 pathway ensures CD4+CD8+ thymocyte survival. Nat. Immunol. 2, 691–697 (2001).

    Article  CAS  Google Scholar 

  19. Hsu, W., Shakya, R. & Costantini, F. Impaired mammary gland and lymphoid development caused by inducible expression of Axin in transgenic mice. J. Cell Biol. 155, 1055–1064 (2001).

    Article  CAS  Google Scholar 

  20. Staal, F.J. et al. Wnt signaling is required for thymocyte development and activates Tcf-1 mediated transcription. Eur. J. Immunol. 1, 285–93 (2001).

    Article  Google Scholar 

  21. Muller, K.M., Luedecker, C.J., Udey, M.C. & Farr, A.G. Involvement of E-cadherin in thymus organogenesis and thymocyte maturation. Immunity 3, 257–264 (1997).

    Article  Google Scholar 

  22. Gounari, F. et al. Somatic activation of β-catenin bypasses pre-TCR signaling and TCR signaling in thymocyte development. Nat. Immunol. 9, 863–869, (2001).

    Article  Google Scholar 

  23. Xu, Y. & Sen, J. β-Catenin expression in thymocytes accelerates thymic involution. Eur. J. Immunol. 33, 12–18 (2003).

    Article  Google Scholar 

  24. Huelsken, J. et al. Requirement for β-catenin in anterior-posterior axis formation in mice. J. Cell Biol. 148, 567–578 (2000).

    Article  CAS  Google Scholar 

  25. Huelsken, J., Vogel, R., Erdmann, B., Cotsarelis, G. & Birchmeier, W. β-Catenin controls hair follicle morhphogenesis and stem cell differentiation in the skin. Cell 105, 533–545 (2001).

    Article  CAS  Google Scholar 

  26. Lee, P.P. et al. B. A critical role for Dnmt1 and DNA methylation in T cell development, function and survival. Immunity 15, 763–774 (2001).

    Article  CAS  Google Scholar 

  27. Shimizu, C. et al. Progression of T cell lineage restriction in the earliest subpopulation of murine adult thymus visualized by the expression of lck proximal promoter activity. Int. Immunol. 1, 105–117 (2001).

    Article  Google Scholar 

  28. Dudley, E.C., Petrie, H.T., Shah, L.M., Owen, M.J. & Hayday, A.C. T cell receptor β chain gene rearrangement and selection during thymocyte development in adult mice. Immunity 2, 83–93 (1994).

    Article  Google Scholar 

  29. Wolfer, A., Wilson, A., Nemir, M., MacDonald, H.R. & Radtke, F. Inactivation of Notch-1 impairs VDJβ rearrangement and allows pre-TCR independent survival of early αβ lineage thymocytes. Immunity 16, 869–879 (2002).

    Article  CAS  Google Scholar 

  30. Varas, A. et al. The role of morphogens in T cell development. Trends Immunol. 24, 197–206 (2003).

    Article  CAS  Google Scholar 

  31. Zamoyska, R. et al. The influence of the src-family kinases, Lck and Fyn, on T cell differentiation, survival and activation. Imm. Rev. 191, 107–118 (2003).

    Article  CAS  Google Scholar 

  32. Mulroy, T.M., Xu, Y. & Sen, J. β-Catenin signals enhance generation of mature T cells. Int. Immunol. 15, 1–10 (2003).

    Article  Google Scholar 

  33. Christian S.L., Sims P.V. & Gold, M.R. The B cell antigen receptor regulates the transcriptional activator β-catenin via protein kinase C-mediated inhibition of glycogen synthase kinase-3. J. Immunol. 169, 758–769 (2002).

    Article  CAS  Google Scholar 

  34. Monick, M.M. et al. Lipopolysaccharide activates Akt in human alveolar macrophages resulting in nuclear accumulation and transcriptional activity of β-catenin. J. Immunol. 166, 4713–4720 (2001).

    Article  CAS  Google Scholar 

  35. Sellin, J.H., Umar, S., Xiao, J. & Morris, A.P. Increased β-catenin expression and nuclear translocation accompany hyperproliferation in vivo. Cancer Res. 61, 2899–2906 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank H. von Boehmer and members of his lab; and I. Aifantis, I. Apostolou and L. Haughn for support and discussions during the course of this work. Supported by grants from the National Cancer Institute and National Institutes of Health, the Arthritis Foundation and the Barr Foundation (to J.M.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyoti Misra Sen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Y., Banerjee, D., Huelsken, J. et al. Deletion of β-catenin impairs T cell development. Nat Immunol 4, 1177–1182 (2003). https://doi.org/10.1038/ni1008

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1008

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing