Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Circumventing tolerance to a human MDM2-derived tumor antigen by TCR gene transfer

Abstract

We identified a tumor-associated cytotoxic T lymphocyte (CTL) epitope derived from the widely expressed human MDM2 oncoprotein and were able to bypass self-tolerance to this tumor antigen in HLA-A*0201 (A2.1) transgenic mice and by generating A2.1-negative, allo-A2.1–restricted human T lymphocytes. A broad range of malignant, as opposed to nontransformed cells, were killed by high-avidity transgenic mouse and allogeneic human CTLs specific for the A2.1-presented MDM2 epitope. Whereas the self-A2.1–restricted human T cell repertoire gave rise only to low-avidity CTLs unable to recognize the natural MDM2 peptide, human A2.1+ T lymphocytes were turned into efficient MDM2-specific CTLs upon expression of wild-type and partially humanized high-affinity T cell antigen receptor (TCR) genes derived from the transgenic mice. These results demonstrate that TCR gene transfer can be used to circumvent self-tolerance of autologous T lymphocytes to universal tumor antigens and thus provide the basis for a TCR gene transfer–based broad-spectrum immunotherapy of malignant disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Efficiency and specificity of CTLs derived from CD8×A2Kb Tg mice and reactive to MDM2(81–88) peptide.
Figure 2: The MDM2(81–88) peptide is a naturally processed CTL epitope.
Figure 3: The MDM2(81–88) peptide is a universal tumor- and leukemia-associated CTL epitope.
Figure 4: The self-A2.1–restricted human T cell repertoire is devoid of high-avidity MDM2(81–88)-specific CTLs.
Figure 5: Bypassing MDM2-specific self-tolerance by allo-A2.1–restricted human CTLs.
Figure 6: Delivering MDM2-specific TCRs into human T lymphocytes.

Similar content being viewed by others

References

  1. Rosenberg, S. A. A new era for cancer immunotherapy based on the genes that encode cancer antigens. Immunity 10, 281–287 (1999).

    Article  CAS  Google Scholar 

  2. Hanson, H. L. et al. Eradication of established tumors by CD8+ T cell adoptive immunotherapy. Immunity 13, 265–276 (2000).

    Article  CAS  Google Scholar 

  3. Theobald, M., Biggs, J., Dittmer, D., Levine, A. J. & Sherman, L. A. Targeting p53 as a general tumor antigen. Proc. Natl. Acad. Sci. USA 92, 11993–11997 (1995).

    Article  CAS  Google Scholar 

  4. Vonderheide, R. H., Hahn, W. C., Schultze, J. L. & Nadler, L. M. The telomerase catalytic subunit is a widely expressed tumor associated antigen recognized by cytotoxic T lymphocytes. Immunity 10, 673–679 (1999).

    Article  CAS  Google Scholar 

  5. Minev, B. et al. Cytotoxic T cell immunity against telomerase reverse transcriptase in humans. Proc. Natl. Acad. Sci. USA 97, 4796–4801 (2000).

    Article  CAS  Google Scholar 

  6. Theobald, M. et al. Tolerance to p53 by A2.1-restricted cytotoxic T lymphocytes. J. Exp. Med. 185, 833–841 (1997).

    Article  CAS  Google Scholar 

  7. Roth, J., Dobbelstein, M., Freedman, D. A., Shenk, T. & Levine, A. J. Nucleo-cytoplasmatic shuttling of the hdm2 oncoprotein regulates the levels of the p53 protein via a pathway used by the human immunodeficiency virus rev protein. EMBO J. 17, 554–564 (1998).

    Article  CAS  Google Scholar 

  8. Freedman, D. A. & Levine, A. J. Regulation of the p53 protein by the MDM2 oncoprotein—thirty-eighth G. H. A. Clowes memorial award lecture. Cancer Res. 59, 1–7 (1999).

    CAS  PubMed  Google Scholar 

  9. Oliner, J. D., Kinzler, K. W., Meltzer, P. S., George, D. L. & Vogelstein, B. Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 358, 80–83 (1992).

    Article  CAS  Google Scholar 

  10. Rammensee, H.-G., Falk, K. & Rötzschke, O. Peptides naturally presented by MHC class I molecules. Annu. Rev. Immunol. 11, 213–244 (1993).

    Article  CAS  Google Scholar 

  11. Rock, K. L. et al. Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78, 761–771 (1994).

    Article  CAS  Google Scholar 

  12. Honda, R. & Yasuda, H. Association of p19ARF with Mdm2 inhibits ubiquitin ligase activity of Mdm2 for tumor suppressor p53. EMBO J. 18, 22–27 (1999).

    Article  CAS  Google Scholar 

  13. Craiu, A., Akopian, T., Goldberg, A. & Rock, K. L. Two distinct proteolytic processes in the generation of a major histocompatibility complex class I–presented peptide. Proc. Natl. Acad. Sci. USA 94, 10850–10855 (1997).

    Article  CAS  Google Scholar 

  14. Stoltze, L. et al. Two new proteases in the MHC class I processing pathway. Nature Immunol. 1, 413–418 (2000).

    Article  CAS  Google Scholar 

  15. Matzinger, P., Zamoyska, R. & Waldmann, H. Self tolerance is H-2–restricted. Nature 308, 738–741 (1984).

    Article  CAS  Google Scholar 

  16. Rammensee, H.-G. & Bevan, M. J. Evidence from in vitro studies that tolerance to self antigens is MHC-restricted. Nature 308, 741–744 (1984).

    Article  CAS  Google Scholar 

  17. Rötzschke, O., Falk, K., Faath, S. & Rammensee, H.-G. On the nature of peptides involved in T cell alloreactivity. J. Exp. Med. 174, 1059–1071 (1991).

    Article  Google Scholar 

  18. Sadovnikova, E. & Stauss, H. J. Peptide-specific cytotoxic T lymphocytes restricted by nonself major histocompatibility complex class I molecules: reagents for tumor immunotherapy. Proc. Natl. Acad. Sci. USA 93, 13114–13118 (1996).

    Article  CAS  Google Scholar 

  19. Sadovnikova, E., Jopling, L. A., Soo, K. S. & Stauss, H. J. Generation of human tumor-reactive cytotoxic T cells against peptide presented by non-self HLA class I molecules. Eur. J. Immunol. 28, 193–200 (1998).

    Article  CAS  Google Scholar 

  20. Münz, C., Obst, R., Osen, W., Stevanovic, S. & Rammensee, H.-G. Alloreactivity as a source of high avidity peptide-specific human CTL. J. Immunol. 162, 25–34 (1999).

    PubMed  Google Scholar 

  21. Stauss, H.J. Immunotherapy with CTLs restricted by nonself MHC. Immunol. Today 20, 180–183 (1999).

    Article  CAS  Google Scholar 

  22. Dick, T.P. et al. Coordinated dual cleavages induced by the proteasome regulator PA28 lead to dominant MHC ligands. Cell 86, 253–262 (1996).

    Article  CAS  Google Scholar 

  23. Morel, S. et al. Processing of some antigens by the standard proteasome but not by the immunoproteasome results in poor presentation by dendritic cells. Immunity 12, 107–117 (2000).

    Article  CAS  Google Scholar 

  24. Sijts, A. J. A. M. et al. Efficient generation of a hepatitis B virus cytotoxic T lymphocyte epitope requires the structural features of immunoproteasomes. J. Exp. Med. 191, 503–514 (2000).

    Article  CAS  Google Scholar 

  25. Stohwasser, R., Standera, S., Peters, I., Kloetzel, P.-M. & Groettrup, M. Molecular cloning of the mouse proteasome subunits MC14 and MECL-1: reciprocally regulated tissue expression of interferon-γ–modulated proteasome subunits. Eur. J. Immunol. 27, 1182–1187 (1997).

    Article  CAS  Google Scholar 

  26. Bevan, M. J. In thymic selection, peptide diversity gives and takes away. Immunity 7, 175–178 (1997).

    Article  CAS  Google Scholar 

  27. Steinbrink, K. et al. Interleukin-10–treated human dendritic cells induce a melanoma-antigen–specific anergy in CD8+ T cells resulting in a failure to lyse tumor cells. Blood 93, 1634–1642 (1999).

    CAS  PubMed  Google Scholar 

  28. Yagi, J. & Janeway, C. A. Jr. Ligand thresholds at different stages of T cell development. Int. Immunol. 2, 83–89 (1990).

    Article  CAS  Google Scholar 

  29. Pircher, H., Rohrer, U. H., Moskophidis, D., Zinkernagel, R. M. & Hengartner, H. Lower receptor avidity required for thymic clonal deletion than for effector T-cell function. Nature 351, 482–485 (1991).

    Article  CAS  Google Scholar 

  30. Holler, P. D. et al. In vitro evolution of a T cell receptor with high affinity for peptide/MHC. Proc. Natl. Acad. Sci. USA 97, 5387–5392 (2000).

    Article  CAS  Google Scholar 

  31. Foote, J. & Eisen, H. N. Breaking the affinity ceiling for antibodies and T cell receptors. Proc. Natl. Acad. Sci. USA 97, 10679–10681 (2000).

    Article  CAS  Google Scholar 

  32. Kessels, H. W. H. G., van den Boom, M. D., Spits, H., Hooijberg, E. & Schumacher, T. N. M. Changing T cell specificity by retroviral T cell receptor display. Proc. Natl. Acad. Sci. USA 97, 14578–14583 (2000).

    Article  CAS  Google Scholar 

  33. Clay, T. M. et al. Efficient transfer of a tumor antigen-reactive TCR to human peripheral blood lymphocytes confers anti-tumor reactivity. J. Immunol. 163, 507–513 (1999).

    CAS  PubMed  Google Scholar 

  34. Willemsen, R. A. et al. Grafting primary human T lymphocytes with cancer-specific chimeric single chain and two chain TCR. Gene Ther. 7, 1369–1377 (2000).

    Article  CAS  Google Scholar 

  35. Cooper, L. J., Kalos, M., Lewinsohn, D. A., Riddell, S. R. & Greenberg, P. D. Transfer of specificity for human immunodeficiency virus type 1 into primary human T lymphocytes by introduction of T-cell receptor genes. J. Virol. 74, 8207–8212 (2000).

    Article  CAS  Google Scholar 

  36. Orentas, R. J., Roskopf, S. J., Nolan, G. P. & Nishimura, M. I. Retroviral transduction of a T cell receptor specific for an Epstein-Barr virus–encoded peptide. Clin. Immunol. 98, 220–228 (2001).

    Article  CAS  Google Scholar 

  37. Kessels, H. W. H. G., Wolkers, M. C., van den Boom, M. D., van der Valk, M. A. & Schumacher, T. N. M. Immunotherapy through TCR gene transfer. Nature Immunol. 2, 957–961 (2001).

    Article  CAS  Google Scholar 

  38. SantAngelo, D. B., Cresswell, P., Janeway, C. A. Jr. & Denzin, L. K. Maintenance of TCR clonality in T cells expressing genes for two TCR heterodimers. Proc. Natl. Acad. Sci. USA 98, 6824–6829 (2001).

    Article  CAS  Google Scholar 

  39. Chang, H.-C. et al. A general method for facilitating heterodimeric pairing between two proteins: application to expression of α and β T-cell receptor extracellular elements. Proc. Natl. Acad. Sci. USA 91, 11408–11412 (1994).

    Article  CAS  Google Scholar 

  40. O'Shea, E. K., Lumb, K. J. & Kim, P. S. Peptide 'velcro': design of a heterodimeric coiled coil. Curr. Biol. 3, 658–667 (1993).

    Article  CAS  Google Scholar 

  41. Sherman, L. A., Hesse, S. V., Irwin, M. J., LaFace, D. & Peterson, P. Selecting T cell receptors with high affinity for self-MHC by decreasing the contribution of CD8. Science 258, 815–818 (1992).

    Article  CAS  Google Scholar 

  42. Jonuleit, H. et al. Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum–free conditions. Eur. J. Immunol. 27, 3135–3142 (1997).

    Article  CAS  Google Scholar 

  43. Drexler, I. et al. Modified vaccinia virus ankara for delivery of human tyrosinase as melanoma-associated antigen: induction of tyrosinase- and melanoma-specific human leukocyte antigen A*0201-restricted cytotoxic T cells in vitro and in vivo. Cancer Res. 59, 4955–4963 (1999).

    CAS  PubMed  Google Scholar 

  44. Theobald, M. et al. The sequence alteration associated with a mutational hotspot in p53 protects cells from lysis by cytotoxic T lymphocytes specific for a flanking peptide epitope. J. Exp. Med. 188, 1017–1028 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Antunes Ferreira, U. Brass, A. Heit and U. Liewer (JGU) for contributing to this study, and M. Jülch (JGU) for flow cytometric analyses. This work was supported by grants from the Deutsche Forschungsgemeinschaft (SFB 432 A3) (to M. T.), the Stiftung Rheinland-Pfalz für Innovation (to M. T.), the MAIFOR program (to J. K. and to M. T.), the Leukemia Research Fund (to H. J. S.), the Cancer Research Campaign (to H. J. S.) and the Medical Research Council (to H. J. S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Theobald.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stanislawski, T., Voss, RH., Lotz, C. et al. Circumventing tolerance to a human MDM2-derived tumor antigen by TCR gene transfer. Nat Immunol 2, 962–970 (2001). https://doi.org/10.1038/ni1001-962

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1001-962

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing