Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Control of pre-T cell proliferation and differentiation by the GTPase Rac-1

Abstract

The GTPase Rac-1 has the potential for pleiotropic functions due to its ability to interact with multiple effectors. Here, activation of Rac-1 is shown to potently regulate pre-T cell differentiation and proliferation at the point of T cell antigen receptor (TCR) β selection. An activated Rac-1 effector domain mutant that restricts signaling to particular actions on actin dynamics can drive pre-T cell differentiation. Rac-1 activation cannot fully substitute for the pre-TCR complex but can fully correct defects in pre-T cell development in mice lacking the adapter molecule Vav-1. The present study identifies the subset of Rac-1 responses that mediate Vav-1 action as critical regulators of TCRβ selection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of L61Rac-1 transgenic mice.
Figure 2: Pre-TCR–mediated responses are enhanced in L61Rac-1 transgenic mice.
Figure 3: Activated Rac-1 restores CD4+CD8+ DP differentiation in RAG-1−/− mice.
Figure 4: Pre-TCR mediated responses are enhanced in L61Y40CRac-1 transgenic mice.
Figure 5: Activated Rac-1 restores pre-T cell differentiation and thymocyte cellularity in Vav-1−/− mice.

Similar content being viewed by others

References

  1. Godfrey, D. I., Kennedy, J., Suda, T. & Zlotnik, A. A developmental pathway involving four phenotypically and functionally distinct subsets of CD3CD4CD8 triple-negative adult mouse thymocytes defined by CD44 and CD25 expression. J. Immunol. 150, 4244–4252 (1993).

    CAS  PubMed  Google Scholar 

  2. Fehling, H. J. & von Boehmer, H. Early αβ T cell development in the thymus of normal and genetically altered mice. Curr. Opin. Immunol. 9, 263–275 (1997).

    Article  CAS  Google Scholar 

  3. von Boehmer, H. et al. Pleiotropic changes controlled by the pre-T-cell receptor. Curr. Opin. Immunol. 11, 135–142 (1999).

    Article  CAS  Google Scholar 

  4. Jameson, S. C. & Bevan, M. J. T-cell selection. Curr. Opin. Immunol. 10, 214–219 (1998).

    Article  CAS  Google Scholar 

  5. Sebzda, E. et al. Selection of the T cell repertoire. Annu. Rev. Immunol. 17, 829–874 (1999).

    Article  CAS  Google Scholar 

  6. Rodewald, H. R. et al. FcγRII/II and CD2 expression mark distinct subpopulations of immature CD4-CD8- murine thymocytes: in vivo developmental kinetics and T cell receptor β chain rearrangement status. J. Exp. Med. 177, 1072–1092 (1993).

    Article  Google Scholar 

  7. Azzam, H. S. et al. CD5 expression is developmentally regulated by T cell receptor (TCR) signals and TCR avidity. J. Exp. Med. 188, 2301–2311 (1998).

    Article  CAS  Google Scholar 

  8. Crespo, P., Schuebel, K. E., Ostrom, A. A., Gutkind, J. S. & Bustelo, X. R. Phosphotyrosine-dependent activation of Rac-1 GDP/GTP exchange by the vav proto-oncogene product. Nature 385, 169–172 (1997).

    Article  CAS  Google Scholar 

  9. Han, J. et al. Lck regulates Vav activation of members of the Rho family of GTPases. Mol. Cell. Biol. 17, 1346–1353 (1997).

    Article  CAS  Google Scholar 

  10. Fischer, K. D. et al. Defective T-cell receptor signaling and positive selection of Vav-deficient CD4+ CD8+ thymocytes. Nature 374, 474–477 (1995).

    Article  CAS  Google Scholar 

  11. Tarakhovsky, A. et al. Defective antigen receptor-mediated proliferation of B and T cells in the absence of Vav. Nature 374, 467–470 (1995).

    Article  CAS  Google Scholar 

  12. Zhang, R., Alt, F. W., Davidson, L., Orkin, S. H. & Swat, W. Defective signaling through the T- and B-cell antigen receptors in lymphoid cells lacking the vav proto-oncogene. Nature 374, 470–473 (1995).

    Article  CAS  Google Scholar 

  13. Turner, M. et al. A requirement for the Rho-family GTP exchange factor Vav in positive and negative selection of thymocytes. Immunity 7, 451–460 (1997).

    Article  CAS  Google Scholar 

  14. Acuto, O. & Cantrell, D. T cell activation and the cytoskeleton. Annu. Rev. Immunol. 18, 165–184 (2000).

    Article  CAS  Google Scholar 

  15. Dustin, M. L. & Cooper, J. A. The immunological synapse and the actin cytoskeleton: molecular hardware for T cell signaling. Nature Immunol. 1, 23–29 (2000).

    Article  CAS  Google Scholar 

  16. Fischer, K. D. et al. Vav is a regulator of cytoskeletal reorganization mediated by the T-cell receptor. Curr. Biol. 8, 554–562 (1998).

    Article  CAS  Google Scholar 

  17. Holsinger, L. J. et al. Defects in actin-cap formation in Vav-deficient mice implicate an actin requirement for lymphocyte signal transduction. Curr. Biol. 8, 563–572 (1998).

    Article  CAS  Google Scholar 

  18. Costello, P. S. et al. The Rho-family GTP exchange factor Vav is a critical transducer of T cell receptor signals to the calcium, ERK, and NF-kappaB pathways. Proc. Natl Acad. Sci. USA 96, 3035–3040 (1999).

    Article  CAS  Google Scholar 

  19. Kuhne, M. R., Ku, G. & Weiss, A. A guanine nucleotide exchange factor-independent function of Vav1 in transcriptional activation. J. Biol. Chem. 275, 2185–2190 (2000).

    Article  CAS  Google Scholar 

  20. Villalba, M., Hernandez, J., Deckert, M., Tanaka, Y. & Altman, M. Vav modulation of the Ras/MEK/ERK signaling pathway plays a role in NFAT activation and CD69 up-regulation. Eur. J. Immunol. 30, 1587–1596 (2000).

    Article  CAS  Google Scholar 

  21. Genot, E., Cleverley, S., Henning, S. & Cantrell, D. A. Multiple p21ras effector pathways regulate nuclear factor of activated T cells. EMBO J. 15, 3923–3933 (1996).

    Article  CAS  Google Scholar 

  22. Genot, E., Reif, K., Beach, S., Kramer, I. & Cantrell, D. p21ras initiates Rac-1 but not phosphatidyl inositol 3 kinase/PKB, mediated signaling pathways in T lymphocytes. Oncogene 17, 1731–1738 (1998).

    Article  CAS  Google Scholar 

  23. Genot, E. M. et al. The T-cell receptor regulates Akt (protein kinase B) via a pathway involving Rac1 and phosphatidylinositol 3-kinase. Mol. Cell. Biol. 20, 5469–,5478 (2000).

    Article  CAS  Google Scholar 

  24. Burbelo, P. D., Drechsel, D. & Hall, A. A conserved binding motif defines numerous candidate target proteins for both Cdc42 and Rac GTPases. J. Biol. Chem. 270, 29071–29074 (1995).

    Article  CAS  Google Scholar 

  25. Bagrodia, S. & Cerione, R. A. Pak to the future. Trends Cell Biol. 9, 350–355 (1999).

    Article  CAS  Google Scholar 

  26. Nobes, C. D. & Hall, A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81, 53–62 (1995).

    Article  CAS  Google Scholar 

  27. Hall, A. Rho GTPases and the actin cytoskeleton. Science 279, 509–514 (1998).

    Article  CAS  Google Scholar 

  28. Lamarche, N. et al. Rac and Cdc42 induce actin polymerization and G1 cell cycle progression independently of p65PAK and the JNK/SAPK MAP kinase cascade. Cell 87, 519–529 (1996).

    Article  CAS  Google Scholar 

  29. Westwick, J. K. et al. Rac regulation of transformation, gene expression, and actin organization by multiple, PAK-independent pathways. Mol. Cell. Biol. 17, 1324–1335 (1997).

    Article  CAS  Google Scholar 

  30. Zhumabekov, T., Corbella, P., Tolaini, M. & Kioussis, D. Improved version of a human CD2 minigene based vector for T cell-specific expression in transgenic mice. J. Immunol. Methods 185, 133–140 (1995).

    Article  CAS  Google Scholar 

  31. Mombaerts, P. et al. RAG-1-deficient mice have no mature B and T lymphocytes. Cell 68, 869–877 (1992).

    Article  CAS  Google Scholar 

  32. Bubeck Wardenburg, J. et al. Regulation of PAK activation and the T cell cytoskeleton by the linker protein SLP-76. Immunity 9, 607–616 (1998).

    Article  CAS  Google Scholar 

  33. Swat, W., Shinakai, Y., Cheng, H.-L., Davidson, L. & Alt, F. W. Activated Ras signals differentiation and expansion of CD4+8+ thymocytes. Proc. Natl Acad. Sci. USA 93, 4683–4687 (1996).

    Article  CAS  Google Scholar 

  34. Gartner, F. et al. Immature thymocytes employ distinct signaling pathways for allelic exclusion versus differentiation and expansion. Immunity 10, 537–546 (1999).

    Article  CAS  Google Scholar 

  35. Ashton-Rickardt, P. G. et al. Evidence for a differential avidity model of T cell selection in the thymus. Cell 76, 651–663 (1994).

    Article  CAS  Google Scholar 

  36. Sebzda, E. et al. Positive and negative thymocyte selection induced by different concentrations of a single peptide. Science 263, 1615–1618 (1994).

    Article  CAS  Google Scholar 

  37. Evan, G. I., Lewis, G. K., Ramsay, G. & Bishop, J. M. Isolation of monoclonal antibodies specific for human c-Myc proto-oncogene product. Mol. Cell. Biol. 5, 3610–3616 (1985).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank I. Rosewell for injection of transgenic constructs, and T. Crafton, S. Hoskins, J. Bee and G. Hutchinson for animal care. Supported by the Imperial Cancer Research Fund, European Community Training and Mobility of Researchers Program (to M. G.; ERBFMICT 972245) and the Medical Research Council (to V. T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doreen A. Cantrell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gomez, M., Tybulewicz, V. & Cantrell, D. Control of pre-T cell proliferation and differentiation by the GTPase Rac-1. Nat Immunol 1, 348–352 (2000). https://doi.org/10.1038/79808

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/79808

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing