Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Plasmacytoid dendritic cells activated by influenza virus and CD40L drive a potent TH1 polarization

Abstract

Plasmacytoid dendritic cells (PDCs) are a subset of dendritic cells present in human blood and inflamed lymph nodes. Here we show that blood PDCs, when stimulated with influenza virus and CD40L in vitro, undergo a maturation process characterized by up-regulation of major histocompatibility complex proteins and adhesion and costimulatory molecules. In addition, PDCs down-regulate CXCR3 and L-selectin, which mediate migration and homing of these cells into the lymph node. Mature PDCs efficiently stimulate T cells and drive a potent TH1 polarization in vitro, which is mediated by the synergistic effect of interleukin 12 and type I interferon. In vivo, mature PDCs are found in secondary lymphoid organs, where they represent the principal source of type I interferon during inflammation. Thus, PDCs probably participate in antiviral and pro-inflammatory responses, rather than in TH2 polarization and tolerance induction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phenotypic analysis of immature and mature PDCs.
Figure 2: T cell stimulatory capacity and morphology of CD40L-matured PDCs.
Figure 3: Viability of DC subsets after stimulation with influenza and intracellular MxA expression.
Figure 4: T cell polarizing capacity of immature or CD40L-stimulated PDCs.
Figure 5: T cell polarizing capacity of immature or influenza virus–stimulated PDCs.
Figure 6: Generation of CD4+ T cells secreting IFN-γand IL-10 by different DC subsets.
Figure 7: Four-color analysis of peripheral blood leukocytes with anti-lineage, anti-CD4, anti-CD11c and anti-ILT3.
Figure 8: PDCs in secondary lymphoid organs.
Figure 9: DC T helper polarizing capacity after cytokine withdrawal.

Similar content being viewed by others

References

  1. Steinman, R. M. The dendritic cell system and its role in immunogenicity. Annu. Rev. Immunol. 9, 271–296 (1991).

    Article  CAS  Google Scholar 

  2. Banchereau, J. & Steinman, R. M. Dendritic cells and the control of immunity. Nature 392, 245– 252 (1998).

    Article  CAS  Google Scholar 

  3. Sauter, B. M. et al. Consequences of cell death: exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J. Exp. Med. 191 , 423–434 (2000).

    Article  CAS  Google Scholar 

  4. Cyster, J. G. Chemokines and the homing of dendritic cells to the T cell areas of lymphoid organs. J. Exp. Med. 189, 447– 450 (1999).

    Article  CAS  Google Scholar 

  5. Grouard, G., Durand, I., Filgueira, L., Banchereau, J. & Liu, Y. J. Dendritic cells capable of stimulating T cells in germinal centres. Nature 384, 364–367 (1996).

    Article  CAS  Google Scholar 

  6. Bjorck, P., Flores-Romo, L. & Liu, Y. J. Human interdigitating dendritic cells directly stimulate CD40-activated naive B cells. Eur. J. Immunol. 27, 1266–1274 (1997).

    Article  CAS  Google Scholar 

  7. O'Doherty, U. et al. Dendritic cells freshly isolated from human blood express CD4 and mature into typical immunostimulatory dendritic cells after culture in monocyte-conditioned medium. J. Exp. Med. 178, 1067–1076 (1993).

    Article  CAS  Google Scholar 

  8. O'Doherty, U. et al. Human blood contains two subsets of dendritic cells, one immunologically mature and the other immature. Immunology 82, 487–493 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Grouard, G. et al. The enigmatic plasmacytoid T cells develop into dendritic cells with interleukin (IL)-3 and CD40-ligand. J. Exp. Med. 185, 1101–1111 (1997).

    Article  CAS  Google Scholar 

  10. Olweus, J. et al. Dendritic cell ontogeny: a human dendritic cell lineage of myeloid origin. Proc. Natl Acad. Sci. USA 94, 12551–12556 (1997).

    Article  CAS  Google Scholar 

  11. Strobl, H. et al. Identification of CD68+lin peripheral blood cells with dendritic precursor characteristics. J. Immunol. 161, 740–748 (1998).

    CAS  PubMed  Google Scholar 

  12. Cella, M. et al. Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nature Med. 5, 919–923 (1999).

    Article  CAS  Google Scholar 

  13. Robinson, S. P. et al. Human peripheral blood contains two distinct lineages of dendritic cells. Eur. J. Immunol. 29, 2769– 2778 (1999).

    Article  CAS  Google Scholar 

  14. Ito, T. et al. CD1a+/CD11c+ subset of human blood dendritic cells is a direct precursor of Langerhans cells. J. Immunol. 163, 1409–1419 ( 1999).

    CAS  PubMed  Google Scholar 

  15. Kohrgruber, N. et al. Survival, maturation, and function of CD11c and CD11c+ peripheral blood dendritic cells are differentially regulated by cytokines. J. Immunol. 163, 3250–3259 (1999).

    CAS  PubMed  Google Scholar 

  16. Vollenweider, R. & Lennert, K. Plasmacytoid T-cell clusters in non-specific lymphadenitis. Virchows Archiv. (Cell Pathol.) 44, 1–14 ( 1983).

    Article  CAS  Google Scholar 

  17. Facchetti, F., De Wolf-Peeters, C., van den Oord, J. J., De vos, R. & Desmet, V. J. Plasmacytoid T cells: a cell population normally present in the reactive lymph node. An immunohistochemical and electron microscopic study. Hum. Pathol. 19, 1085 –1092 (1988).

    Article  CAS  Google Scholar 

  18. Facchetti, F. et al. Plasmacytoid T cells. Immunohistochemical evidence for their monocyte/macrophage origin. Am. J. Pathol. 133, 15–21 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Girard, J. P. & Springer, T. A. High endothelial venules (HEVs): specialized endothelium for lymphocyte migration. Immunol. Today 16, 449–457 ( 1995).

    Article  CAS  Google Scholar 

  20. Piali, L. et al. The chemokine receptor CXCR3 mediates rapid and shear-resistant adhesion-induction of effector T lymphocytes by the chemokines IP10 and Mig . Eur. J. Immunol. 28, 961– 972 (1988).

    Article  Google Scholar 

  21. Farber, J. M. Mig and IP-10: CXC chemokines that target lymphocytes. J. Leukoc. Biol. 61, 246–257 ( 1997).

    Article  CAS  Google Scholar 

  22. Perussia, B., Fanning, V. & Trinchieri, G. A leukocyte subset bearing HLA-DR antigens is responsible for in vitro alpha interferon production in response to viruses. Nat. Immun. Cell Growth Regul. 4, 120– 137 (1985).

    CAS  PubMed  Google Scholar 

  23. Chehimi, J. et al. Dendritic cells and IFN-α producing cells are two functionally distinct non-B, non-monocytic HLA-DR+ cell subsets in human peripheral blood. Immunology 68, 488– 490 (1989).

    PubMed Central  Google Scholar 

  24. Fitzgerald-Bocarsly, P., Feldman, M., Mendelsohn, M., Curl, S. & Lopez, C. Human mononuclear cells which produce interferon-α during NK(HSV-FS) assays are HLA-DR positive cells distinct from cytolytic natural killer effectors. J. Leukoc. Biol. 43, 323–334 (1988).

    Article  CAS  Google Scholar 

  25. Feldman, M. & Fitzgerald-Bocarsly, P. Sequential enrichment and immunocytochemical visualization of human interferon-α producing cells. J. Interferon Res. 10, 435– 446 (1990).

    Article  CAS  Google Scholar 

  26. Fitzgerald-Bocarsly, P. Human natural interferon-α producing cells. Pharmacol. Ther. 60, 39–62 ( 1993).

    Article  CAS  Google Scholar 

  27. Siegal, F. P. et al. The nature of the principal type 1 interferon-producing cells in human blood. Science 284, 1835– 1837 (1999).

    Article  CAS  Google Scholar 

  28. Rissoan, M. C. et al. Reciprocal control of T helper cell and dendritic cell differentiation . Science 283, 1183–1186 (1999).

    Article  CAS  Google Scholar 

  29. Liu, Y. J. & Blom, B. Introduction: Th2-inducing DC2 for immunotherapy. Blood 95, 2482– 2483 (2000).

    CAS  PubMed  Google Scholar 

  30. Parronchi, P. et al. Effects of interferon-α on cytokine profile, T cell receptor repertoire and peptide reactivity of human allergen-specific T cells . Eur. J. Immunol. 26, 697– 703 (1996).

    Article  CAS  Google Scholar 

  31. Rogge, L. et al. Selective expression of an interleukin-12 receptor component by human T helper 1 cells. J. Exp. Med. 185, 825–831 (1997).

    Article  CAS  Google Scholar 

  32. Cella, M. et al. Maturation, activation, and protection of dendritic cells induced by double-stranded RNA. J. Exp. Med. 189, 821–829 (1999).

    Article  CAS  Google Scholar 

  33. Arpinati, M., Green, C. L., Heimfeld, S., Heuser, J. E. & Anasetti, C. Granulocyte-colony stimulating factor mobilizes T helper 2-inducing dendritic cells. Blood 95, 2484–2490 (2000).

    CAS  Google Scholar 

  34. Trinchieri, G. Interleukin-12: a cytokine at the interface of inflammation and immunity. Adv. Immunol. 70, 83–243 (1998).

    Article  CAS  Google Scholar 

  35. Gerosa, F. et al. CD4(+) T cell clones producing both interferon-gamma and interleukin-10 predominate in bronchoalveolar lavages of active pulmonary tuberculosis patients . Clin. Immunol. 92, 224– 234 (1999).

    Article  CAS  Google Scholar 

  36. Groux, R. et al. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 389, 737– 742 (1997).

    Article  CAS  Google Scholar 

  37. Gerosa, F. et al. Interleukin-12 primes human CD4 and CD8 T cell clones for high production of both interferon-γ and interleukin-10. J. Exp. Med. 183, 2559–2569 (1996).

    Article  CAS  Google Scholar 

  38. Ridge, J. P., Di Rosa, F. & Matzinger, P. A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 393, 474–478 (1998).

    Article  CAS  Google Scholar 

  39. Facchetti, F. et al. Plasmacytoid monocytes (so-called plasmacytoid T cells) in granulomatous lymphadenitis. Hum. Pathol. 20, 588–593 (1989).

    Article  CAS  Google Scholar 

  40. Facchetti, F., De Wolf-Peters, C., Marocolo, D. & De Vos, R. Plasmacytoid monocytes in granulomatous lymphadenitis and in histiocytic necrotizing lymphadenitis. Sarcoidosis 8, 170– 171 (1991).

    CAS  PubMed  Google Scholar 

  41. Facchetti, F. et al. Expression of inducible nitric oxide synthase in human granulomas and histiocytic reactions. Am. J. Pathol. 154, 45–52 (1999).

    Article  Google Scholar 

  42. Langenkamp, A., Messi, M., Lanzavecchia, A. & Sallusto, F. Kinetics of dendritic cell activation impacting on priming of TH1, TH2 and unpolarized T cells. Nature Immunol. 1, 311–316 (2000).

    Article  CAS  Google Scholar 

  43. Iwasaki, A. & Kelsall, B. L. Freshly isolated Peyer's patch, but not spleen, dendritic cells produce interleukin 10 and induce the differentiation of T helper type 2 cells. J. Exp. Med. 190, 229–239 (1999).

    Article  CAS  Google Scholar 

  44. Stumbles, P. A. et al. Resting respiratory tract dendritic cells preferentially stimulate T helper cell type 2 (Th2) responses and require obligatory cytokine signals for induction of Th1 immunity. J. Exp. Med. 188, 2019–2031 (1998).

    Article  CAS  Google Scholar 

  45. Khanna, A. et al. Effects of liver-derived dendritic cell progenitors on Th1- and Th2-like cytokine responses in vitro and in vivo. J. Immunol. 164, 1346–1354 (2000).

    Article  CAS  Google Scholar 

  46. Res, P. C., Couwenberg, F., Vyth-Dreese, F. A. & Spits, H. Expression of pTα mRNA in a committed dendritic cell precursor in the human thymus. Blood 94, 2647– 2657 (1999).

    CAS  PubMed  Google Scholar 

  47. Steinman, M. R., Turley, S., Melmann, I. & Inaba, K. The induction of tolerance by dendritic cells that have captured apoptotic cells. J. Exp. Med. 191, 411–416 (2000).

    Article  CAS  Google Scholar 

  48. Sallusto, F., Cella, M., Danieli, C. & Lanzavecchia, A. Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J. Exp. Med. 182 , 389–400 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Dessing, T. Hayden and H. Kohler for cell sorting assistance; P. Lane, H. Gallati and I. Julkunen for reagents; M. Kopf, F. Sallusto and R. Ettinger for reading the manuscript. The Basel Institute for Immunology was founded and is supported by Hoffmann-La Roche Ltd, CH-4002 Basel. Part of these results were presented at the Workshop on Lymphoid Organogenesis held in Basel (November 5–6, 1999).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Colonna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cella, M., Facchetti, F., Lanzavecchia, A. et al. Plasmacytoid dendritic cells activated by influenza virus and CD40L drive a potent TH1 polarization. Nat Immunol 1, 305–310 (2000). https://doi.org/10.1038/79747

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/79747

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing