Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

T cell depletion in HIV-1 infection: how CD4+ T cells go out of stock

Abstract

HIV-1 infection is characterized by a gradual loss of CD4+ T cells and progressive immune deficiency that leads to opportunistic infections, otherwise rare malignancies and ultimately death. Extensive research over the past two decades has increased our insight into the pathogenic mechanisms underlying these features of HIV-1 infection. Here, we will give a brief overview of the most recent findings and present a model that fits most of the relevant aspects of HIV-1 infection as known. We hypothesize that HIV-1 infection depletes T cell supplies (which are not replaced because of low and static thymic function) by direct infection and killing of cells and through hyperactivation of the immune system.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Factors that determine TREC content of the naïve T cell population.
Figure 2: T cell depletion by persistent immune activation.

References

  1. Miedema, F., Tersmette, M. & Van Lier, R. A. W. AIDS pathogenesis: a dynamic interaction between HIV and the immune system. Immunol. Today 11, 293–297 (1990).

    Article  CAS  Google Scholar 

  2. Miedema, F. Immunobiology of HIV infection: from latency and reactivation to protection and perturbation. The Immunologist 3, 228–230 (1995).

    CAS  Google Scholar 

  3. Meyaard, L. et al. Programmed death of T cells in HIV-1 infection. Science 257, 217–219 (1992).

    Article  CAS  Google Scholar 

  4. Ho, D. D., Moudgil, T. & Alam, M. Quantification of human immunodeficiency virus type 1 in the blood of infected persons. N. Engl. J. Med. 321, 1621–1625 (1989).

    Article  CAS  Google Scholar 

  5. Michael, N. L., Vahey, M., Burke, D. S. & Redfield, R. R. Viral DNA and mRNA expression correlate with the stage of human immunodeficiency virus (HIV) type 1 infection in humans: evidence for viral replication in all stages of HIV disease. J. Virol. 66, 310–316 (1992).

    CAS  Google Scholar 

  6. Steel, C. M. et al. HLA haplotype A1 B8 DR3 as a risk factor for HIV-related disease. Lancet 1, 1185–1188 (1988).

    Article  CAS  Google Scholar 

  7. Simmonds, P. et al. Determinants of HIV disease progression: six-year longitudinal study in the Edinburgh haemophilia/HIV cohort. Lancet 338, 1159–1163 (1991).

    Article  CAS  Google Scholar 

  8. Wei, X. et al. Viral dynamics in human immunodeficiency virus type 1 infection. Nature 373, 117–122 (1995).

    Article  CAS  Google Scholar 

  9. Ho, D. D. et al. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373, 123–126 (1995).

    Article  CAS  Google Scholar 

  10. Wolthers, K. C. et al. T-cell telomere length in HIV-1 infection: no evidence for increased CD4+ T cell turnover. Science 274, 1543–1547 (1996).

    Article  CAS  Google Scholar 

  11. Palmer, L. D. et al. Telomere length, telomerase activity, and replicative potential in HIV infection: analysis of CD4+ and CD8+ T cells from HIV-discordant monozygotic twins. J. Exp. Med. 185, 1381–1386 (1997).

    Article  CAS  Google Scholar 

  12. Pakker, N. G. et al. Biphasic kinetics of peripheral blood T cells after triple combination therapy in HIV-1 infection: a composite of redistribution and proliferation. Nature Med. 4, 208–214 (1998).

    Article  CAS  Google Scholar 

  13. Bucy, R. P. et al. Initial increase in blood CD4+ lymphocytes after HIV antiretroviral therapy reflects redistribution from lymphoid tissues. J. Clin. Invest. 103, 1391–1398 (1999).

    Article  CAS  Google Scholar 

  14. Wolthers, K. C., Noest, A. J., Otto, S. A., Miedema, F. & De Boer, R. J. Normal telomere lengths in naive and memory CD4+ T cells in HIV-1 infection: a mathematical interpretation. AIDS Res. Hum. Retroviruses 15, 1053–1062 (1999).

    Article  CAS  Google Scholar 

  15. Sachsenberg, N. et al. Turnover of CD4+ and CD8+ T lymphocytes in HIV-1 infection as measured by Ki-67 antigen. J. Exp. Med. 187, 1295–1303 (1998).

    Article  CAS  Google Scholar 

  16. Fleury, S. et al. Limited CD4+ T-cell renewal in early HIV-1 infection: effect of highly active antiretroviral therapy. Nature Med. 4, 794–801 (1998).

    Article  CAS  Google Scholar 

  17. Hazenberg, M. D. et al. T cell division in human immunodeficiency virus (HIV-1)-infection is mainly due to immune activation: a longitudinal analysis in patients before and during highly active anti-retroviral therapy. Blood 95, 249–255 (2000).

    CAS  Google Scholar 

  18. Fleury, S. et al. Long-term kinetics of T cell production in HIV-infected subjects treated with highly active anti-retroviral therapy. Proc. Natl Acad. Sci. USA 97, 5393–5398 (2000).

    Article  CAS  Google Scholar 

  19. Mohri, H., Bonhoeffer, S., Monard, S., Perelson, A. S. & Ho, D. D. Rapid turnover of T lymphocytes in SIV-infected rhesus macaques. Science 279, 1223–1227 (1998).

    Article  CAS  Google Scholar 

  20. Mohri, H. et al. Rapid turnover of T lymphocytes in HIV-1 infection and its reduction by HAART: a kinetic study using deuterated glucose. 7th Conference on Retroviruses and Opportunistic Infections, San Francisco (2000).

    Google Scholar 

  21. Wolthers, K. C., Schuitemaker, H. & Miedema, F. Rapid CD4+ T-cell turnover in HIV-1 infection: a paradigm revisited. Immunol. Today 19, 44–48 (1998).

    Article  CAS  Google Scholar 

  22. Clark, D. R. et al. T-cell progenitor function during progressive human immunodeficiency virus-1 infection and after antiretroviral therapy. Blood 96, 242–249 (2000).

    CAS  Google Scholar 

  23. Vigano, A. et al. Thymus volume correlates with the progression of vertical HIV infection. AIDS 13, F29–F34 (1999).

    Article  CAS  Google Scholar 

  24. McCune, J. M. et al. High prevalence of thymic tissue in adults with human immunodeficiency virus-1 infection. J. Clin. Invest. 101, 2301–2308 (1998).

    Article  CAS  Google Scholar 

  25. Smith, K. Y. et al. Thymic size and lymphocyte restoration in patients with human immunodeficiency virus infection after 48 weeks of zidovudine, lamivudine, and ritonavir therapy. J. Infect. Dis. 181, 141–147 (2000).

    Article  CAS  Google Scholar 

  26. Douek, D. C. et al. Changes in thymic function with age and during the treatment of HIV infection. Nature 396, 690–695 (1999).

    Article  Google Scholar 

  27. Poulin, J.-F. et al. Direct evidence for thymic function in adult humans. J. Exp. Med. 190, 479–486 (1999).

    Article  CAS  Google Scholar 

  28. Zhang, L. et al. Measuring recent thymic emigrants in blood of normal and HIV-1-infected individuals before and after effective therapy. J. Exp. Med. 190, 725–732 (1999).

    Article  CAS  Google Scholar 

  29. Douek, D. C., Koup, R. A., McFarland, R. D., Sullivan, J. L. & Luzuriaga, K. Effect of HIV on thymic function before and after antiretroviral therapy in children. J. Infect. Dis. 181, 1479–1482 (2000).

    Article  CAS  Google Scholar 

  30. Hatzakis, A. et al. Effect of recent thymic emigrants on progression of HIV-1 disease. Lancet 355, 599–604 (2000).

    Article  CAS  Google Scholar 

  31. Livak, F. & Schatz, D. G. T-cell receptor alpha locus V(D)J recombination by-products are abundant in thymocytes and mature T cells. Mol. Cell. Biol. 16, 609–618 (1998).

    Article  Google Scholar 

  32. Breit, T. M., Verschuren, M. C. M., Wolvers-Tettero, I. L. M., Van Gastel-Mol, E. J. & Van Dongen, J. J. M. Human T cell leukemias with continuous V(D)J recombinase activity for TCR-δ gene deletion. J. Immunol. 159, 4341–4349 (1997).

    CAS  Google Scholar 

  33. Hazenberg, M. D. et al. Increased cell division but not thymic dysfunction rapidly affects the TREC content of the naive T cell population in HIV-1 infection. Nature Med. 6, 1036–1042 (2000).

    Article  CAS  Google Scholar 

  34. Messele, T. et al. Reduced naive and increased activated CD4 and CD8 cells in healthy adult Ethiopians compared with their Dutch counterparts. J. Clin. Exp. Immunol. 115, 443–450 (1999).

    Article  CAS  Google Scholar 

  35. Chun, T-W. et al. Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature 387, 183–187 (1997).

    Article  CAS  Google Scholar 

  36. Embretson, J. et al. Analysis of human immunodeficiency virus-infected tissues by amplification and in situ hybridization reveals latent and permissive infections at single-cell resolution. Proc. Natl Acad. Sci. USA 90, 357–361 (1993).

    Article  CAS  Google Scholar 

  37. Clark, D. R., De Boer, R. J., Wolthers, K. C. & Miedema, F. T cell dynamics in HIV-1 infection. Adv. Immunol. 73, 301–327 (1999).

    Article  CAS  Google Scholar 

  38. Gruters, R. A. et al. Immunological and virological markers in individuals progressing from seroconversion to AIDS. AIDS 5, 837–844 (1991).

    Article  CAS  Google Scholar 

  39. Roederer, M. et al. CD8 naive T cell counts decrease progressively in HIV-infected adults. J. Clin. Invest. 95, 2061–2066 (1995).

    Article  CAS  Google Scholar 

  40. Rabin, R. L., Roederer, M., Maldonado, Y., Petru, A. & Herzenberg, L. A. Altered representation of naive and memory CD8 T cell subsets in HIV-infected children. J. Clin. Invest. 95, 2054–2060 (1995).

    Article  CAS  Google Scholar 

  41. Swingler, S. et al. HIV-1 Nef mediates lymphocyte chemotaxis and activation by infected macrophages. Nature Med. 5, 997–1003 (1999).

    Article  CAS  Google Scholar 

  42. Mahalingam, M. et al. T cell activation and disease severity in HIV infection. Clin. Exp. Immunol. 93, 337–343 (1993).

    Article  CAS  Google Scholar 

  43. Sprent, J. Lifespan of naive, memory and effector lymphocytes. Curr. Opin. Immunol. 5, 433–438 (1993).

    Article  CAS  Google Scholar 

  44. Rosenzweig, M. et al. Increased rates of CD4+ and CD8+ T lymphocyte turnover in simian immunodeficiency virus-infected macaques. Proc. Natl Acad. Sci. USA 95, 6388–6393 (1998).

    Article  CAS  Google Scholar 

  45. McCune, J. M. et al. Factors influencing T cell turnover in HIV-1-seropositive patients. J. Clin. Invest. 105, R1–R8 (2000).

    Article  CAS  Google Scholar 

  46. Grossman, Z. et al. T cell turnover in SIV infection. Science 284, 555 (1999).

    Article  Google Scholar 

  47. Grossman, Z. & Herberman, R. B. T-cell homeostasis in HIV-1 infection is neither failing nor blind: modified cell counts reflect an adaptive response of the host. Nature Med. 3, 486–490 (1997).

    Article  CAS  Google Scholar 

  48. Unutmaz, D., Pileri, P. & Abrignani, S. Antigen-independent activation of naive and memory resting T cells by a cytokine combination. J. Exp. Med. 180, 1159–1164 (1994).

    Article  CAS  Google Scholar 

  49. Giorgi, J. V. et al. Shorter survival in advanced human immunodeficiency virus type 1 infection is more closely associated with T lymphocyte activation than with plasma virus burden or virus chemokine coreceptor usage. J. Infect. Dis. 179, 859–870 (1999).

    Article  CAS  Google Scholar 

  50. Marlink, R. et al. Reduced rate of disease development after HIV-2 infection as compared to HIV-1. Science 265, 1587–1590 (1994).

    Article  CAS  Google Scholar 

  51. Michel, P. et al. Reduced immune activation and T cell apoptosis in human immunodeficiency virus type 2 compared with type 1: correlation of T cell apoptosis with β2 microglobulin concentration and disease evolution. J. Infect. Dis. 181, 64–75 (2000).

    Article  CAS  Google Scholar 

  52. Chakrabart, L. A. et al. Normal T cell turnover in sooty mangabeys harboring active simian immunodeficiency virus infection. J. Virol. 74, 1209–1223 (2000).

    Article  Google Scholar 

  53. Hazenberg, M. D., Clark, D. R. & Miedema, F. Tilted balance of T cell renewal in HIV-1 infection. AIDS Rev. 1, 67–73 (1999).

    Google Scholar 

  54. Haynes, B. F., Markert, M. L., Sempowski, G. D., Patel, D. D. & Hale, L. P. The role of the thymus in immune reconstitution in aging, bone marrow transplantation, and HIV-1 infection. Ann. Rev. Immunol. 18, 529–560 (2000).

    Article  CAS  Google Scholar 

  55. Rep, M. et al. Treatment with depleting CD4 monoclonal antibody results in a preferential loss of circulating naive T cells but does not affect IFN-γ secreting TH1 cells in humans. J. Clin. Invest. 99, 2225–2231 (1997).

    Article  CAS  Google Scholar 

  56. Mackall, C. L. et al. Age, thymopoiesis, and CD4+ T-lymphocyte regeneration after intensive chemotherapy. N. Engl. J. Med. 332, 143–149 (1995).

    Article  CAS  Google Scholar 

  57. George, A. J. T. & Ritter, M. A. Thymic involution with ageing: obsolescence or good housekeeping? Immunol. Today 17, 267–272 (1996).

    Article  CAS  Google Scholar 

  58. Hong, R. The DiGeorge anomaly. Immunodefic. Rev. 3, 1–14 (1991).

    CAS  Google Scholar 

  59. Cohen Stuart, J. W. T. et al. Early recovery of CD4+ T lymphocytes in children on highly active antiretroviral therapy. AIDS 12, 2155–2159 (1998).

    Article  CAS  Google Scholar 

  60. Franco, J. M. et al. CD4+ and CD8+ T lymphocyte regeneration after anti-retroviral therapy in HIV-1 infected children and adult patients. Clin. Exp. Immunol. 119, 493–498 (2000).

    Article  CAS  Google Scholar 

  61. Vigano, A. et al. Early immune reconstitution after potent antiretroviral therapy in HIV-infected children correlates with the increase in thymus volume. AIDS 14, 251–261 (2000).

    Article  CAS  Google Scholar 

  62. De Vries, E. et al. Reconstitution of lymphocyte subpopulations after paediatric bone marrow transplantation. Bone Marrow Transplant. 25, 267–275 (2000).

    Article  CAS  Google Scholar 

  63. Van Rossum, A. M. C. et al. Immune reconstitution in HIV-1 infected children treated with highly active antiretroviral therapy is independent of their age and pretreatment immune status. (Submitted, 2000).

    Google Scholar 

  64. Schuitemaker, H. et al. Biological phenotype of human immunodeficiency virus type 1 clones at different stages of infection: progression of disease is associated with a shift from monocytotropic to T-cell-tropic virus populations. J. Virol. 66, 1354–1360 (1992).

    CAS  Google Scholar 

  65. Blaak, H. et al. In vivo HIV-1 infection of CD45RA+CD4+ T cells is established primarily by syncytium-inducing variants and correlates with the rate of CD4+ T cell decline. Proc. Natl Acad. Sci. USA 97, 1269–1274 (2000).

    Article  CAS  Google Scholar 

  66. Kaneshima, H. et al. Rapid-high, syncytium-inducing isolates of human immunodeficiency virus type 1 induce cytopathicity in the human thymus of SCID-hu mouse. J. Virol. 68, 8188–8192 (1994).

    CAS  Google Scholar 

  67. Kitchen, S. G., Uittenboogaart, C. H. & Zack, J. A. Mechanism of human immunodeficiency virus type 1 localization in CD4-negative thymocytes: differentiation from a CD4-positive precursor allows productive infection. J. Virol. 71, 5713–5722 (1997).

    CAS  Google Scholar 

  68. Koot, M. et al. Prognostic value of human immunodeficiency virus type 1 biological phenotype for rate of CD4+ cell depletion and progression to AIDS. Ann. Intern. Med. 118, 681–688 (1993).

    Article  CAS  Google Scholar 

  69. Rosenberg, E. S. et al. Vigorous HIV-1 specific CD4+ T cell responses associated with control of viremia. Science 278, 1447–1450 (1997).

    Article  CAS  Google Scholar 

  70. Kalams, S. A. et al. Association between virus-specific cytotoxic T-lymphocyte and helper responses in human immunodeficiency virus type-1 infection. J. Virol. 73, 6715–6720 (1999).

    CAS  Google Scholar 

  71. Pontesilli, O. et al. Longitudinal analysis of human immunodeficiency virus type-1 (HIV-1) specific cytotoxic T lymphocyte responses: a predominant gag-specific response is associated with non-progressive infection. J. Infect. Dis. 178, 1008–1018 (1998).

    Article  CAS  Google Scholar 

  72. Pantaleo, G. et al. HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of disease. Nature 362, 355–358 (1993).

    Article  CAS  Google Scholar 

  73. Connors, M. et al. HIV infection induces changes in CD4+ T-cell phenotype and depletions within the CD4+ T cell repertoire that are not immediately restored by antiviral or immune-based therapies. Nature Med. 3, 533–540 (1997).

    Article  CAS  Google Scholar 

  74. Kostense, S. et al. Diversity of the T cell receptor BV repertoire in HIV-1 infected patients reflects the biphasic CD4+ T-cell repopulation kinetics during highly active antiretroviral therapy. AIDS 12, F235–F240 (1998).

    Article  CAS  Google Scholar 

  75. Haase, A.T. Population biology of HIV-1 infection: viral and CD4+ T cell demographics and dynamics in lymphatic tissues. Annu. Rev. Immunol. 17, 625–656 (1999).

    Article  CAS  Google Scholar 

  76. Hellerstein, M. K. & McCune, J. M. T cell turnover in HIV-1 disease. Immunity 7, 583–589 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Z. Grossman, R. van Lier, R. van Rij and R. de Boer for reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mette D. Hazenberg.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hazenberg, M., Hamann, D., Schuitemaker, H. et al. T cell depletion in HIV-1 infection: how CD4+ T cells go out of stock. Nat Immunol 1, 285–289 (2000). https://doi.org/10.1038/79724

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/79724

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing