Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A critical role for interleukin 4 in activating alloreactive CD4 T cells

Abstract

To generate antigen-specific responses, T cells and antigen presenting cells (APCs) must physically associate with each other and elaborate soluble factors that drive the full differentiation of each cell type. Immediately after T cell activation, CD4 T cells can produce both interferon γ (IFN-γ) and interleukin 4 (IL-4) before polarization into distinct T helper subsets. Inhibition of IL-4 during mixed allogeneic lymphocyte culture resulted in a defect in the ability of APCs to generate sufficient costimulatory signals for activation of alloreactive T cells. In vivo, a deficiency in IL-4 production inhibited the activation of alloreactive IL-2–, IL-4– and IFN-γ–producing CD4 T cells in mice challenged with allogeneic skin grafts, resulting in prolonged skin graft survival. Thus, production of IL-4 by CD4 T cells helps activate alloreactive T cells by affecting APC function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: (a) Neutralization of IL-4 in mixed allogeneic cultures inhibits activation of cytokine-producing CD4 T cells.
Figure 2: (a) Neutralization of IL-4 in mixed allogeneic culture does not lead to T cell anergy.
Figure 3: Neutralization of IL-4 in vitro prevents up-regulation of B7.1 and B7.2 surface expression on APC.
Figure 4: Neutralization or absence of IL-4 in vivo results in prolonged skin allograft survival.
Figure 5: (a) Neutralization of IL-4 in vivo prevents expansion of CD4 T cells.
Figure 6: (a) Neutralization of IL-4 in vivo inhibits the activation of alloreactive CD4 T cells.

Similar content being viewed by others

References

  1. Auchincloss, H. Jr & Sultan, H. Antigen processing and presentation in transplantation. Curr. Opin. Immunol. 8, 681–687 (1996).

    Article  CAS  Google Scholar 

  2. Gould, D. & Auchincloss, H. Jr Direct and indirect recognition: the role of MHC antigens in graft rejection. Immunol. Today 20, 77–82 (1999).

    Article  CAS  Google Scholar 

  3. Turka, L. A. et al. T-cell activation by the CD28 ligand B7 is required for cardiac allograft rejection in vivo. Proc. Natl Acad. Sci. USA 89, 11102–11105 (1992).

    Article  CAS  Google Scholar 

  4. Lenschow, D. J., Walunas, T. L. & Bluestone, J. A. CD28/B7 system of T cell costimulation. Ann. Rev. Immunol. 14, 233–258 (1996).

    Article  CAS  Google Scholar 

  5. Valle, A., Aubry, J. P., Durand, I. & Banchereau, J. Il-4 and IL-2 upregulate the expression of antigen B7, the B cell counterstructure to T cell CD28: an amplification mechanism for T-B cell interactions. Int. Immunol. 3, 229–235 (1991).

    Article  CAS  Google Scholar 

  6. Nabavi, N. et al. Signaling through the MHC class II cytoplasmic domain is required for antigen presentation and induces B7 expression. Nature 360, 266–268 (1992).

    Article  CAS  Google Scholar 

  7. Chen, L. et al. Costimulation of antitumor immunity by the B7 counterreceptor for the T lymphocyte molecules CD28 and CTLA-4. Cell 71, 1093–1102 (1992).

    Article  CAS  Google Scholar 

  8. Lin, H. et al. Long-term acceptance of major histocompatibility complex mismatched cardiac allografts induced by CTLA4Ig plus donor-specific transfusion. J. Exp. Med. 178, 1801–1806 (1993).

    Article  CAS  Google Scholar 

  9. Nakamura, T., Kamogawa, Y., Bottomly, K. & Flavell, R. A. Polarization of IL-4 and IFN producing CD4+ T cells following activation of naive CD4+ T cells. J. Immunol. 158, 1085–1094 (1997).

    CAS  PubMed  Google Scholar 

  10. Mosmann, T. R. & Coffman, R. L. Th1 and Th2 cells: different patters of lymphokine secretion lead to different functional properties. Annu. Rev. Immunol. 7, 145–173 (1989).

    Article  CAS  Google Scholar 

  11. Kuhn, R., Rajewsky, K. & Muller, W. Generation and analysis of interleukin-4 deficient mice. Science 254, 707–710 (1991).

    Article  CAS  Google Scholar 

  12. Stack, R. M. et al. IL-4 treatment of small splenic B cells induces costimulatory molecules B7–1 and B7-2. J. Immunol. 152, 5723–5723 (1994).

    CAS  PubMed  Google Scholar 

  13. Li, X.C. et al. IL-2 and IL-4 double knockout mice reject islet allografts: a role for novel T cell growth factors in allograft rejection. J. Immunol. 161, 890–896 (1998).

    CAS  PubMed  Google Scholar 

  14. Sawada, T., Wu, Y., Sachs, D. H. & Iacomini, J. CD4+ T cells are able to reject class I disparate allografts. Transplantation 64, 335–340 (1997).

    Article  CAS  Google Scholar 

  15. Rosenberg, A. S. & Singer, A. Cellular basis of skin allograft rejection: An in vivo model of immune-mediated tissue destruction. Annu. Rev. Immunol. 10, 333–358 (1992).

    Article  CAS  Google Scholar 

  16. Albert, M. L., Sauter, B. & Bhardwaj, N. Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 392, 86–89 (1998).

    Article  CAS  Google Scholar 

  17. Sauter, B. et al. Consequences of Cell Death. Exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J. Exp. Med. 191, 423–434 (2000).

    Article  CAS  Google Scholar 

  18. Mencacci, A. et al. Endogenous Interleukin 4 is required for development of protective CD4+ T helper type 1 cell responses to Candida albicans. J. Exp. Med. 187, 307–317 (1998).

    Article  CAS  Google Scholar 

  19. Suzuki, Y. et al. IL-4 is protective against development of Toxoplasmic encephalitis. J. Immunol. 157, 2564–2569 (1996).

    CAS  PubMed  Google Scholar 

  20. Schuler, T. et al. T helper cell type 1-associated and cytotoxic T lymphocyte-mediated tumor immunity is impaired in interleukin 4 deficient mice. J. Exp. Med. 189, 803–810 (1999).

    Article  CAS  Google Scholar 

  21. Kamogawa, Y. et al. The relationship of IL-4- and IFN-γ producing T cells studied by lineage ablation of IL-4-producing cells. Cell 75, 985–995 (1993).

    Article  CAS  Google Scholar 

  22. Perez, V. L. et al. Induction of peripheral T cell tolerance in vivo requires CTLA-4 engagement. Immunity 6, 411–417 (1997).

    Article  CAS  Google Scholar 

  23. Davies, J. D. et al. T cell regulation in adult transplantation tolerance. J. Immunol. 157, 529–533 (1996).

    CAS  PubMed  Google Scholar 

  24. Sarmiento, M., Glasebrook, A. L. & Fitch, F. W. IgG or IgM monoclonal antibodies reactive with different determinants on the molecular complex bearing Lyt2 antigen block T cell-mediated cytolysis in the absence of complement. J. Immunol. 125, 2665–2672 (1980).

    CAS  PubMed  Google Scholar 

  25. Dialynas, D. P. et al. Characterization of the murine T cell surface molecule designated L3T4, identified by monoclonal antibody GK1.5: similarity of L3T4 to the human Leu 3/T4 molecule. J. Immunol. 131, 2445–2451 (1984).

    Google Scholar 

  26. Ohara, J. & Paul, W. E. Production of a monoclonal antibody to and molecular characterization of B-cell stimulatory factor-1. Nature 315, 333–336 (1985).

    Article  CAS  Google Scholar 

  27. Chomczynski, P. & Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159 (1987).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Pillai, J. J. Lafaille and H. Winn for critical review of the manuscript; N. Cretin for assistance with skin grafts; P. Heeger for advice on performing ELISPOT assays; and D. H. Sachs for monoclonal antibodies 11B11, 2.43 and GK1.5. Supported in part by the National Institutes of Health grant RO1 AI43619 (to J.I.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Iacomini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bagley, J., Sawada, T., Wu, Y. et al. A critical role for interleukin 4 in activating alloreactive CD4 T cells. Nat Immunol 1, 257–261 (2000). https://doi.org/10.1038/79811

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/79811

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing