Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Dendritic cell regulation of TH1-TH2 development

Abstract

Understanding the control exerted by cytokines on T helper cell subsets 1 and 2 (TH1-TH2) development has progressed to a fairly satisfying knowledge of intracellular signals and transcription factors. Less is understood about the molecular basis of TH1-TH2 development exerted by other parameters, such as how the antigen presenting cell can influence this process. Recent work suggests that dendritic cell subsets contribute significant polarizing influences on T helper differentiation, but how this comes about is less clear. In some cases known pathways may be used, as in the dendritic cell subset 1 exerting TH1 polarization by interleukin 12 (IL-12) production and STAT4 activation. In others, the effects are still in need of explanation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Model of DC migration and effects on innate and adaptive immunity.
Figure 2: Mouse and human DC classes regulate the type of T cell–mediated immune response.
Figure 3

Similar content being viewed by others

References

  1. Zinkernagel, R. M. et al. Antigen localization regulates immune responses in a dose- and time-dependent fashion: a geographical view of immune reactivity. Immunol. Rev. 156, 199–209 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Austyn, J. M. New insights into the mobilization and phagocytic activity of dendritic cells. J. Exp. Med. 183, 1287–1292 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Barratt-Boyes, S. M., Watkins, S. C. & Finn, O. J. Migration of cultured chimpanzee dendritic cells following intravenous and subcutaneous injection. Adv. Exp. Med. Biol. 417, 71–75 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Kupiec-Weglinski, J. W., Austyn, J. M. & Morris, P. J. Migration patterns of dendritic cells in the mouse. Traffic from the blood, and T cell-dependent and -independent entry to lymphoid tissues. J. Exp. Med. 167, 632–645 (1988).

    Article  CAS  PubMed  Google Scholar 

  5. De Smedt, T. et al. Regulation of dendritic cell numbers and maturation by lipopolysaccharide in vivo. J. Exp. Med. 184, 1413–1424 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Cumberbatch, M., Dearman, R. J. & Kimber, I. Interleukin 1 β and the stimulation of Langerhans cell migration: comparisons with tumour necrosis factor α. Arch. Dermatol. Res. 289, 277–284 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Cumberbatch, M., Dearman, R. J. & Kimber, I. Langerhans cells require signals from both tumor necrosis factor-α and interleukin-1 β for migration. Immunology 92, 388–395 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dieu, M. C. et al. Selective recruitment of immature and mature dendritic cells by distinct chemokines expressed in different anatomic sites. J. Exp. Med. 188, 373–386 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cyster, J. G. Chemokines and the homing of dendritic cells to the T cell areas of lymphoid organs. J. Exp. Med. 189, 447–450 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cella, M., Engering, A., Pinet, V., Pieters, J. & Lanzavecchia, A. Inflammatory stimuli induce accumulation of MHC class II complexes on dendritic cells. Nature 388, 782–787 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Pierre, P. et al. Developmental regulation of MHC class II transport in mouse dendritic cells. Nature 388, 787–792 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Inaba, K. et al. The formation of immunogenic major histocompatibility complex class II-peptide ligands in lysosomal compartments of dendritic cells is regulated by inflammatory stimuli. J. Exp. Med. 191, 927–936 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Iezzi, G., Karjalainen, K. & Lanzavecchia, A. The duration of antigenic stimulation determines the fate of naive and effector T cells. Immunity 8, 89–95 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Iezzi, G., Scotet, E., Scheidegger, D. & Lanzavecchia, A. The interplay between the duration of TCR and cytokine signaling determines T cell polarization. Eur. J. Immunol. 29, 4092–4101 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Reis e Sousa, C. et al. Paralysis of dendritic cell IL-12 production by microbial products prevents infection-induced immunopathology. Immunity 11, 637–647 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Winzler, C. et al. Maturation stages of mouse dendritic cells in growth factor-dependent long-term cultures. J. Exp. Med. 185, 317–328 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. De Smedt, T. et al. Antigen-specific T lymphocytes regulate lipopolysaccharide-induced apoptosis of dendritic cells in vivo. J. Immunol. 161, 4476–4479 (1998).

    CAS  PubMed  Google Scholar 

  18. Anderson, D. M. et al. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390, 175–179 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Wong, B. R. et al. TRANCE (tumor necrosis factor [TNF]-related activation-induced cytokine), a new TNF family member predominantly expressed in T cells, is a dendritic cell-specific survival factor. J. Exp. Med. 186, 2075–2080 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vremec, D. et al. The surface phenotype of dendritic cells purified from mouse thymus and spleen: investigation of the CD8 expression by a subpopulation of dendritic cells. J. Exp. Med. 176, 47–58 (1992).

    Article  CAS  PubMed  Google Scholar 

  21. Inaba, K. et al. High levels of a major histocompatibility complex II-self peptide complex on dendritic cells from the T cell areas of lymph nodes. J. Exp. Med. 186, 665–672 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu, L., Zhang, M., Jenkins, C. & MacPherson, G. G. Dendritic cell heterogeneity in vivo : two functionally different dendritic cell populations in rat intestinal lymph can be distinguished by CD4 expression. J. Immunol. 161, 1146–1155 (1998).

    CAS  PubMed  Google Scholar 

  23. Howard, C. J. et al. Identification of two distinct populations of dendritic cells in afferent lymph that vary in their ability to stimulate T cells. J. Immunol. 159, 5372–5382 (1997).

    CAS  PubMed  Google Scholar 

  24. Grouard, G. et al. The enigmatic plasmacytoid T cells develop into dendritic cells with interleukin (IL)-3 and CD40-ligand. J. Exp. Med. 185, 1101–1111 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rissoan, M. C. et al. Reciprocal control of T helper cell and dendritic cell differentiation. Science 283, 1183–1186 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Vremec, D. et al. CD4 and CD8 expression by dendritic cell subtypes in mouse thymus and spleen. J. Immunol. 164, 2978–2986 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Salomon, B., Cohen, J. L., Masurier, C. & Klatzmann, D. Three populations of mouse lymph node dendritic cells with different origins and dynamics. J. Immunol. 160, 708–717 (1998).

    CAS  PubMed  Google Scholar 

  28. Wu, L. et al. RelB is essential for the development of myeloid-related CD8α dendritic cells but not of lymphoid-related CD8α+ dendritic cells. Immunity 9, 839–847 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Wu, L., Li, C. L. & Shortman, K. Thymic dendritic cell precursors: relationship to the T lymphocyte lineage and phenotype of the dendritic cell progeny. J. Exp. Med. 184, 903–911 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Radtke, F. et al. Notch1 deficiency dissociates the intrathymic development of dendritic cells and T cells. J. Exp. Med. 191, 1085–1093 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Suss, G. & Shortman, K. A subclass of dendritic cells kills CD4 T cells via Fas/Fas-ligand-induced apoptosis. J. Exp. Med. 183, 1789–1796 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Kronin, V. et al. A subclass of dendritic cells regulates the response of naive CD8 T cells by limiting their IL-2 production. J. Immunol. 157, 3819–3827 (1996).

    CAS  PubMed  Google Scholar 

  33. Pulendran, B. et al. Distinct dendritic cell subsets differentially regulate the class of immune response in vivo. Proc. Natl Acad. Sci. USA 96, 1036–1041 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Maldonado-Lopez, R. et al. CD8α+ and CD8α subclasses of dendritic cells direct the development of distinct T helper cells in vivo. J. Exp. Med. 189, 587–592 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Maldonado-Lopez, R. et al. Role of CD8α+ and CD8α dendritic cells in the induction of primary immune responses in vivo. J. Leuk. Biol. 66, 242–246 (1999).

    Article  CAS  Google Scholar 

  36. Kalinski, P., Hilkens, C. M., Wierenga, E. A. & Kapsenberg, M. L. T-cell priming by type-1 and type-2 polarized dendritic cells: the concept of a third signal. Immunol. Today 20, 561–567 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Kapsenberg, M. L. & Kalinski, P. The concept of type 1 and type 2 antigen-presenting cells. Immunol. Lett. 69, 5–6 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Kapsenberg, M. L., Hilkens, C. M., Wierenga, E. A. & Kalinski, P. The role of antigen-presenting cells in the regulation of allergen-specific T cell responses. Curr. Opin. Immunol. 10, 607–613 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Pulendran, B. et al. Developmental pathways of dendritic cells in vivo: distinct function, phenotype, and localization of dendritic cell subsets in FLT3 ligand-treated mice. J. Immunol. 159, 2222–2231 (1997).

    CAS  PubMed  Google Scholar 

  40. O'Connell, P., Logar, A. J., Morelli, A. E. & Thomas, A. W. Comparative studies on hepatic myeloid and lymphoid DC. 6th Int. Symp. Dendritic Cells 62 (2000). [Abstr.]

  41. Fazekas de St Groth, B. The evolution of self-tolerance: a new cell arises to meet the challenge of self-reactivity. Immunol. Today 19, 448–454 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Reis e Sousa, C. & Germain, R. N. Analysis of adjuvant function by direct visualization of antigen presentation in vivo: endotoxin promotes accumulation of antigen-bearing dendritic cells in the T cell areas of lymphoid tissue. J. Immunol. 162, 6552–6561 (1999).

    PubMed  Google Scholar 

  43. Anjuere, F. et al. Definition of dendritic cell subpopulations present in the spleen, Peyer's patches, lymph nodes, and skin of the mouse. Blood 93, 590–598 (1999).

    CAS  PubMed  Google Scholar 

  44. Merad, M., Engleman, E.G. & Fong, L. Migratory Myeloid DC express CD8α antigen in peripheral lymphoid organs. 6th Int. Symp. Dendritic Cells 72 (2000). [Abstr.]

  45. Macatonia, S. E. et al. Dendritic cells produce IL-12 and direct the development of Th1 cells from naive CD4+ T cells. J. Immunol. 154, 5071–5079 (1995).

    CAS  PubMed  Google Scholar 

  46. Koch, F. et al. High level IL-12 production by murine dendritic cells: upregulation via MHC class II and CD40 molecules and downregulation by IL-4 and IL-10. J. Exp. Med. 184, 741–746 (1996). [Published Erratum appears in J. Exp. Med. 184, 1590 (1996).]

    Article  CAS  PubMed  Google Scholar 

  47. Kalinski, P., Schuitemaker, J. H., Hilkens, C. M., Wierenga, E. A. & Kapsenberg, M. L. Final maturation of dendritic cells is associated with impaired responsiveness to IFN-γ and to bacterial IL-12 inducers: decreased ability of mature dendritic cells to produce IL-12 during the interaction with Th cells. J. Immunol. 162, 3231–3236 (1999).

    CAS  PubMed  Google Scholar 

  48. Snijders, A., Kalinski, P., Hilkens, C. M. & Kapsenberg, M. L. High-level IL-12 production by human dendritic cells requires two signals. Int. Immunol. 10, 1593–1598 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Vieira, P. L., de Jong, E. C., Wierenga, E. A., Kapsenberg, M. L. & Kalinski, P. Development of Th1-inducing capacity in myeloid dendritic cells requires environmental instruction. J. Immunol. 164, 4507–4512 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Macatonia, S. E., Hsieh, C. S., Murphy, K. M. & O'Garra, A. Dendritic cells and macrophages are required for Th1 development of CD4+ T cells from αβ TCR transgenic mice: IL-12 substitution for macrophages to stimulate IFN-γ production is IFN—-dependent. Int. Immunol. 5, 1119–1128 (1993).

    Article  CAS  PubMed  Google Scholar 

  51. Hsieh, C. S. et al. Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science 260, 547–549 (1993).

    Article  CAS  PubMed  Google Scholar 

  52. Reis e Sousa, C. et al. In vivo microbial stimulation induces rapid CD40 ligand-independent production of interleukin 12 by dendritic cells and their redistribution to T cell areas. J. Exp. Med. 186, 1819–1829 (1997).

    Article  CAS  PubMed  Google Scholar 

  53. Aliberti, J. et al. CCR5 provides a signal for microbial induced production of IL-12 by CD8α+ dendritic cells. Nature Immunol. 1, 83–87 (2000).

    Article  CAS  Google Scholar 

  54. Hochrein, H. et al. Interleukin-4 is a major regulatory cytokine governing bioactive interleukin-12 prudction by mouse and human dendritic cells. J. Exp. Med. (in the press, 2000).

  55. Kalinski, P. et al. IL-4 is a mediator of IL-12p70 induction by human Th2 cells: reversal of polarized Th2 phenotype by dendritic cells. J. Immunol. 165, 1877–1881 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. De Becker, G. et al. Regulation of T helper cell differentiation in vivo by soluble and membrane proteins provided by antigen-presenting cells. Eur. J. Immunol. 28, 3161–3171 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. O'Garra, A. Cytokines induce the development of functionally heterogeneous T helper cell subsets. Immunity 8, 275–283 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Siegal, F. P. et al. The Nature of the principal type 1 interferon-producing cells in human blood. Science 284, 1835–1837 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Cho, S. S. et al. Activation of STAT4 by IL-12 and IFN-α: evidence for the involvement of ligand-induced tyrosine and serine phosphorylation. J. Immunol. 157, 4781–4789 (1996).

    CAS  PubMed  Google Scholar 

  60. Rogge, L. et al. The role of Stat4 in species-specific regulation of Th cell development by type I IFNs. J. Immunol. 161, 6567–6574 (1998).

    CAS  PubMed  Google Scholar 

  61. Farrar, J. D., Smith, J. D., Murphy, T. L. & Murphy, K. M. Recruitment of Stat4 to the Human Interferon-α/β Receptor Requires Activated Stat2. J. Biol. Chem. 275, 2693–2697 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Farrar, J. D. et al. Selective loss of type I interferon-induced STAT4 activation caused by a minisatellite insertion in mouse STAT2. Nature Immunol. 1, 65–69 (2000).

    Article  CAS  Google Scholar 

  63. Kadowoki, N. et al. Natural interferon α/β-producing cells link innate and adaptive immunity. J. Exp. Med. 192 (in the press, 2000).

  64. Jacobson, N. G. et al. Interleukin 12 signaling in T helper type 1 (Th1) cells involves tyrosine phosphorylation of signal transducer and activator of transcription (Stat)3 and Stat4. J. Exp. Med. 181, 1755–1762 (1995).

    Article  CAS  PubMed  Google Scholar 

  65. Thierfelder, W. E. et al. Requirement for Stat4 in interleukin-12-mediated responses of natural killer and T cells. Nature 382, 171–174 (1996).

    Article  CAS  PubMed  Google Scholar 

  66. Kaplan, M. H., Sun, Y. L., Hoey, T. & Grusby, M. J. Impaired IL-12 responses and enhanced development of Th2 cells in Stat4-deficient mice. Nature 382, 174–177 (1996).

    Article  CAS  PubMed  Google Scholar 

  67. Wu, C., Ferrante, J., Gately, M. K. & Magram, J. Characterization of IL-12 receptor β1 chain (IL-12Rβ1)-deficient mice: IL-12Rβ1 is an essential component of the functional mouse IL-12 receptor. J. Immunol. 159, 1658–1665 (1997).

    CAS  PubMed  Google Scholar 

  68. Xu, X., Sun, Y. L. & Hoey, T. Cooperative DNA binding and sequence-selective recognition conferred by the STAT amino-terminal domain. Science 273, 794–797 (1996).

    Article  CAS  PubMed  Google Scholar 

  69. Robinson, D. et al. IGIF does not drive Th1 development but synergizes with IL-12 for interferon-γ production and activates IRAK and NFκB. Immunity 7, 571–581 (1997).

    Article  CAS  PubMed  Google Scholar 

  70. Yang, J., Murphy, T. L., Ouyang, W. & Murphy, K. M. Induction of interferon-γ production in Th1 CD4+ T cells: evidence for two distinct pathways for promoter activation. Eur. J. Immunol. 29, 548–555 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Ouyang, W. et al. The Ets transcription factor ERM is Th1-specific and induced by IL-12 through a Stat4-dependent pathway. Proc. Natl Acad. Sci. USA 96, 3888–3893 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Carter, L. L. & Murphy, K. M. Lineage-specific requirement for signal transducer and activator of transcription (Stat)4 in interferon γ production from CD4(+) versus CD8(+) T cells. J. Exp. Med. 189, 1355–1360 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kaplan, M. H., Wurster, A. L. & Grusby, M. J. A signal transducer and activator of transcription (Stat)4-independent pathway for the development of T helper type 1 cells. J. Exp. Med. 188, 1191–1196 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Frucht, D. M. et al. Stat4 is expressed in activated peripheral blood monocytes, dendritic cells, and macrophages at sites of Th1-mediated inflammation. J. Immunol. 164, 4659–4664 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Szabo, S. J. et al. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100, 655–669 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Gourley, T. et al. A novel role for the major histocompatibility complex class II transactivator CIITA in the repression of IL-4 production. Immunity 10, 377–386 (1999).

    Article  CAS  PubMed  Google Scholar 

  77. Rincon, M. et al. Interferon-γ expression by Th1 effector T cells mediated by the p38 MAP kinase signaling pathway. EMBO J. 17, 2817–2829 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yang, D. D. et al. Differentiation of CD4+ T cells to Th1 cells requires MAP kinase JNK2. Immunity 9, 575–585 (1998).

    Article  CAS  PubMed  Google Scholar 

  79. Dong, C. et al. Defective T cell differentiation in the absence of Jnk1. Science 282, 2092–2095 (1998).

    Article  CAS  PubMed  Google Scholar 

  80. Lu, H. T. et al. Defective IL-12 production in mitogen-activated protein (MAP) kinase kinase 3 (Mkk3)-deficient mice. EMBO J. 18, 1845–1857 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Taki, S. et al. Multistage regulation of Th1-type immune responses by the transcription factor IRF-1. Immunity 6, 673–679 (1997).

    Article  CAS  PubMed  Google Scholar 

  82. Lohoff, M. et al. Interferon regulatory factor-1 is required for a T helper 1 immune response in vivo. Immunity 6, 681–689 (1997).

    Article  CAS  PubMed  Google Scholar 

  83. Coccia, E. M. et al. Interleukin-12 induces expression of interferon regulatory factor-1 via signal transducer and activator of transcription-4 in human T helper type 1 cells. J. Biol. Chem. 274, 6698–6703 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. Wenner, C. A., Guler, M. L., Macatonia, S. E., O'Garra, A. & Murphy, K. M. Roles of IFN-γ and IFN-α in IL-12-induced T helper cell-1 development. J. Immunol. 156, 1442–1447 (1996).

    CAS  PubMed  Google Scholar 

  85. Parronchi, P. et al. IL-4 and IFN (α and β) exert opposite regulatory effects on the development of cytolytic potential by Th1 or Th2 human T cell clones. J. Immunol. 149, 2977–2983 (1992).

    CAS  PubMed  Google Scholar 

  86. Rogge, L. et al. Selective expression of an interleukin-12 receptor component by human T helper 1 cells. J. Exp. Med. 185, 825–831 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bacon, C. M. et al. Interleukin 12 induces tyrosine phosphorylation and activation of STAT4 in human lymphocytes. Proc. Natl Acad. Sci. USA 92, 7307–7311 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Uze, G., Lutfalla, G. & Gresser, I. Genetic transfer of a functional human interferon α receptor into mouse cells: cloning and expression of its cDNA. Cell 60, 225–234 (1990).

    Article  CAS  PubMed  Google Scholar 

  89. Cook, J. R., Cleary, C. M., Mariano, T. M., Izotova, L. & Pestka, S. Differential responsiveness of a splice variant of the human type I interferon receptor to interferons. J. Biol. Chem. 271, 13448–13453 (1996).

    Article  CAS  PubMed  Google Scholar 

  90. Novick, D., Cohen, B. & Rubinstein, M. The human interferon α/β receptor: characterization and molecular cloning. Cell 77, 391–400 (1994).

    Article  CAS  PubMed  Google Scholar 

  91. Soh, J. et al. Expression of a functional human type I interferon receptor in hamster cells: application of functional yeast artificial chromosome (YAC) screening. J. Biol. Chem. 269, 18102–18110 (1994).

    CAS  PubMed  Google Scholar 

  92. Colamonici, O. R. & Domanski, P. Identification of a novel subunit of the type I interferon receptor localized to human chromosome 21. J. Biol. Chem. 268, 10895–10899 (1993).

    CAS  PubMed  Google Scholar 

  93. Kim, S. H., Cohen, B., Novick, D. & Rubinstein, M. Mammalian type I interferon receptors consists of two subunits: IFNaR1 and IFNaR2. Gene 196, 279–286 (1997).

    Article  CAS  PubMed  Google Scholar 

  94. Owczarek, C. M. et al. Cloning and characterization of soluble and transmembrane isoforms of a novel component of the murine type I interferon receptor, IFNAR 2. J. Biol. Chem. 272, 23865–23870 (1997).

    Article  CAS  PubMed  Google Scholar 

  95. Domanski, P. et al. A region of the β subunit of the interferon α receptor different from box 1 interacts with Jak1 and is sufficient to activate the Jak-Stat pathway and induce an antiviral state. J. Biol. Chem. 272, 26388–26393 (1997).

    Article  CAS  PubMed  Google Scholar 

  96. Colamonici, O. et al. Direct binding to and tyrosine phosphorylation of the α subunit of the type I interferon receptor by p135tyk2 tyrosine kinase. Mol. Cell. Biol. 14, 8133–8142 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yan, H., Krishnan, K., Lim, J. T., Contillo, L. G. & Krolewski, J. J. Molecular characterization of an α interferon receptor 1 subunit (IFNαR1) domain required for TYK2 binding and signal transduction. Mol. Cell. Biol. 16, 2074–2082 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Abramovich, C. et al. Differential tyrosine phosphorylation of the IFNAR chain of the type I interferon receptor and of an associated surface protein in response to IFN-α and IFN-β. EMBO J. 13, 5871–5877 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yan, H. et al. Phosphorylated interferon-α receptor 1 subunit (IFNαR1) acts as a docking site for the latent form of the 113 kDa STAT2 protein. EMBO J. 15, 1064–1074 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Leung, S., Qureshi, S. A., Kerr, I. M. & Darnell, J. E. Jr & Stark, G. R. Role of STAT2 in the α interferon signaling pathway. Mol. Cell. Biol. 15, 1312–1317 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Qureshi, S. A., Leung, S., Kerr, I. M., Stark, G. R. & Darnell, J. E., Jr Function of Stat2 protein in transcriptional activation by α interferon. Mol. Cell. Biol. 16, 288–293 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Yang, C. H. et al. Direct association of STAT3 with the IFNAR-1 chain of the human type I interferon receptor. J. Biol. Chem. 271, 8057–8061 (1996).

    Article  CAS  PubMed  Google Scholar 

  103. Pfeffer, L. M. et al. STAT3 as an adapter to couple phosphatidylinositol 3-kinase to the IFNAR1 chain of the type I interferon receptor. Science 276, 1418–1420 (1997).

    Article  CAS  PubMed  Google Scholar 

  104. Santini, S. M. et al. Type I interferon as a powerful adjuvant for monocyte-derived dendritic cell development and activity in vitro an in Hu-PBL-SCID mice. J. Exp. Med. 191, 1777–1788 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Cella, M. et al. Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nature Medicine 5, 919–923 (1999).

    Article  CAS  PubMed  Google Scholar 

  106. Burstein, H. J., Shea, C. M. & Abbas, A. K. Aqueous antigens induce in vivo tolerance selectively in IL-2- and IFN—-producing (Th1) cells. J. Immunol. 148, 3687–3691 (1992).

    CAS  PubMed  Google Scholar 

  107. De Wit, D. et al. The injection of deaggregated γ globulins in adult mice induces antigen-specific unresponsiveness of T helper type 1 but not type 2 lymphocytes. J. Exp. Med. 175, 9–14 (1992).

    Article  CAS  PubMed  Google Scholar 

  108. Rincon, M., Anguita, J., Nakamura, T., Fikrig, E. & Flavell, R. A. Interleukin (IL)-6 directs the differentiation of IL-4-producing CD4+ T cells. J. Exp. Med. 185, 461–469 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Schmitz, J. et al. Induction of interleukin 4 (IL-4) expression in T helper (Th) cells is not dependent on IL-4 from non-Th cells. J. Exp. Med. 179, 1349–1353 (1994).

    Article  CAS  PubMed  Google Scholar 

  110. Ranger, A. M., Das, M. P., Kuchroo, V. K. & Glimcher, L. H. B7–2 (CD86) is essential for the development of IL-4-producing T cells. Int. Immunol. 8, 1549–1560 (1996).

    Article  CAS  PubMed  Google Scholar 

  111. Freeman, G. J. et al. B7-1 and B7–2 do not deliver identical costimulatory signals, since B7-2 but not B7-1 preferentially costimulates the initial production of IL-4. Immunity 2, 523–532 (1995).

    Article  CAS  PubMed  Google Scholar 

  112. Coffman, R. L. & Reiner, S. L. Instruction, selection, or tampering with the odds? Science 284, 1283 (1999).

    Article  CAS  PubMed  Google Scholar 

  113. Hollander, G. A. et al. Monoallelic expression of the interleukin-2 locus. Science 279, 2118–2121 (1998).

    Article  CAS  PubMed  Google Scholar 

  114. Bix, M. & Locksley, R. M. Independent and epigenetic regulation of the interleukin-4 alleles in CD4+ T cells. Science 281, 1352–1354 (1998).

    Article  CAS  PubMed  Google Scholar 

  115. Naramura, M., Hu, R. J. & Gu, H. Mice with a fluorescent marker for interleukin 2 gene activation. Immunity 9, 209–216 (1998).

    Article  CAS  PubMed  Google Scholar 

  116. Riviere, I., Sunshine, M. J. & Littman, D. R. Regulation of IL-4 expression by activation of individual alleles. Immunity 9, 217–228 (1998).

    Article  CAS  PubMed  Google Scholar 

  117. Bird, J. J. et al. Helper T cell differentiation is controlled by the cell cycle. Immunity 9, 229–237 (1998).

    Article  CAS  PubMed  Google Scholar 

  118. Gett, A. V. & Hodgkin, P. D. Cell division regulates the T cell cytokine repertoire, revealing a mechanism underlying immune class regulation. Proc. Natl Acad. Sci. USA 95, 9488–9493 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Richter, A., Lohning, M. & Radbruch, A. Instruction for cytokine expression in T helper lymphocytes in relation to proliferation and cell cycle progression. J. Exp. Med. 190, 1439–1450 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Finkelman, F. D. et al. Stat6 regulation of in vivo IL-4 responses. J. Immunol. 164, 2303–2310 (2000).

    Article  CAS  PubMed  Google Scholar 

  121. Jankovic, D. et al. Single cell analysis reveals that IL-4 receptor/Stat6 signaling is not required for the in vivo or in vitro development of CD4(+) lymphocytes with a Th2 cytokine profile. J. Immunol. 164, 3047–3055 (2000).

    Article  CAS  PubMed  Google Scholar 

  122. Ouyang, W. et al. Stat6-independent GATA-3 autoactivation directs IL-4-independent Th2 development and commitment. Immunity 12, 27–37 (2000).

    Article  CAS  PubMed  Google Scholar 

  123. Rodriguez-Palmero, M., Hara, T., Thumbs, A. & Hunig, T. Triggering of T cell proliferation through CD28 induces GATA-3 and promotes T helper type 2 differentiation in vitro and in vivo. Eur. J. Immunol. 29, 3914–3924 (1999).

    Article  CAS  PubMed  Google Scholar 

  124. Ouyang, W. et al. Inhibition of Th1 development mediated by GATA-3 through an IL-4-independent mechanism. Immunity 9, 745–755 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M.M. thanks O. L. Urbain for helpful discussions, R. Maldonado-Lopez for Figures 1 and 2. M. M. is a Research Associate of the Belgian Fonds National de la Recherche Scientifique.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth M. Murphy.

Additional information

Note added in proof: The personal communication by I. Weisman mentioned on p200 is to be published as, Traver, D. et al. Development of CD8α+ dendritic cells from a common myeloid progenitor. Science (in the press, 2000).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moser, M., Murphy, K. Dendritic cell regulation of TH1-TH2 development. Nat Immunol 1, 199–205 (2000). https://doi.org/10.1038/79734

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/79734

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing