Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Contribution of the innate immune system to autoimmune myocarditis: a role for complement

Abstract

Myocarditis is a principal cause of heart disease among young adults and is often a precursor of heart failure due to dilated cardiomyopathy. We show here that complement is critical for the induction of experimental autoimmune myocarditis and that it acts through complement receptor type 1 (CR1) and type 2 (CR2). We also found a subset of CD44hiCD62Llo T cells that expresses CR1 and CR2 and propose that both receptors are involved in the expression of B and T cell activation markers, T cell proliferation and cytokine production. These findings provide a mechanism by which activated complement, a key product of the innate immune response, modulates the induction of an autoimmune disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Depletion of C3.
Figure 2: Blockade of CR1 and CR2.
Figure 3: Histological examination of the hearts of mice treated with mAb 7G6 or controls.
Figure 4: Immunization of CR+/+ and CR−/− mice with cardiac myosin.
Figure 5: Expression of CD69, B7-1 and B7-2.
Figure 6: Expression of CD44 and CD62L on the surface of T cells.
Figure 7: Expression of CR1 and CR2 on a subset of CD44hiCD62Llo T cells.

Similar content being viewed by others

References

  1. Fearon, D. T. & Carroll, M. C. Regulation of B lymphocyte responses to foreign and self-antigens by the CD19/CD21 complex. Annu. Rev. Immunol. 18, 393–422 (2000).

    Article  CAS  Google Scholar 

  2. Carroll, M. C. The role of complement and complement receptors in induction and regulation of immunity. Annu. Rev. Immunol. 16, 545–568 (1998).

    Article  CAS  Google Scholar 

  3. Kinoshita, T. et al. Monoclonal antibodies to mouse complement receptor type 1 (CR1). Their use in a distribution study showing that mouse erythrocytes and platelets are CR1-negative. J. Immunol. 140, 3066–3072 (1988).

    CAS  PubMed  Google Scholar 

  4. Hebell, T., Ahearn, J. M. & Fearon, D. T. Suppression of the immune response by a soluble complement receptor of B lymphocytes. Science 254, 102–105 (1991).

    Article  CAS  Google Scholar 

  5. Molina, H. et al. Markedly impaired humoral immune response in mice deficient in complement receptors 1 and 2. Proc. Natl Acad. Sci. USA 93, 3357–3361 (1996).

    Article  CAS  Google Scholar 

  6. Dempsey, P. W., Allison, M. E., Akkaraju, S., Goodnow, C. C. & Fearon, D. T. C3d of complement as a molecular adjuvant: bridging innate and acquired immunity. Science 271, 348–350 (1996).

    Article  CAS  Google Scholar 

  7. Fang, Y., Xu, C., Fu, Y. X., Holers, V. M. & Molina, H. Expression of complement receptors 1 and 2 on follicular dendritic cells is necessary for the generation of a strong antigen-specific IgG response. J. Immunol. 160, 5273–5279 (1998).

    CAS  PubMed  Google Scholar 

  8. Pepys, M. B. Role of complement in induction of antibody production in vivo. Effect of cobra factor and other C3-reactive agents on thymus-dependent and thymus-independent antibody responses. J. Exp. Med. 140, 126–145 (1974).

    Article  CAS  Google Scholar 

  9. Wolfgram, L. J., Beisel, K. W., Herskowitz, A. & Rose, N. R. Variations in the susceptibility to Coxsackievirus B3-induced myocarditis among different strains of mice. J. Immunol. 136, 1846–1852 (1986).

    CAS  PubMed  Google Scholar 

  10. Neu, N. et al. Cardiac myosin induces myocarditis in genetically predisposed mice. J. Immunol. 139, 3630–3636 (1987).

    CAS  PubMed  Google Scholar 

  11. Neu, N., Beisel, K. W., Traystman, M. D., Rose, N. R. & Craig, S. W. Autoantibodies specific for the cardiac myosin isoform are found in mice susceptible to Coxsackievirus B3-induced myocarditis. J. Immunol. 138, 2488–2492 (1987).

    CAS  PubMed  Google Scholar 

  12. Lodge, P. A., Herzum, M., Olszewski, J. & Huber, S. A. Coxsackievirus B-3 myocarditis. Acute and chronic forms of the disease caused by different immunopathogenic mechanisms. Am. J. Pathol. 128, 455–463 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Estrin, M. & Huber, S. A. Coxsackievirus B3-induced myocarditis. Autoimmunity is L3T4+ T helper cell and IL-2 independent in BALB/c mice. Am. J. Pathol. 127, 335–341 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Smith, S. C. & Allen, P. M. Myosin-induced acute myocarditis is a T cell-mediated disease. J. Immunol. 147, 2141–2147 (1991).

    CAS  PubMed  Google Scholar 

  15. Wolfgram, L. J., Beisel, K. W. & Rose, N. R. Heart-specific autoantibodies following murine coxsackievirus B3 myocarditis. J. Exp. Med. 161, 1112–1121 (1985).

    Article  CAS  Google Scholar 

  16. Liao, L. et al. Antibody-mediated autoimmune myocarditis depends on genetically determined target organ sensitivity. J. Exp. Med. 181, 1123–1131 (1995).

    Article  CAS  Google Scholar 

  17. Huber, S. A. & Lodge, P. A. Coxsackievirus B-3 myocarditis. Identification of different pathogenic mechanisms in DBA/2 and Balb/c mice. Am. J. Pathol. 122, 284–291 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kuan, A. P., Zuckier, L., Liao, L., Factor, S. M. & Diamond, B. Immunoglobulin isotype determines pathogenicity in antibody-mediated myocarditis in naive mice. Circ. Res. 86, 281–285 (2000).

    Article  CAS  Google Scholar 

  19. Karp, C. L. et al. Identification of complement factor 5 as a susceptibility locus for experimental allergic asthma. Nature Immunol. 1, 221–226 (2000).

    Article  CAS  Google Scholar 

  20. Erickson, R. P., Tachibana, D. K., Herzenberg, L. A. & Rosenberg, L. T. A single gene controlling hemolytic complement and a serum antigen in the mouse. J. Immunol. 92, 611–615 (1964).

    CAS  PubMed  Google Scholar 

  21. Davoust, N. et al. Central nervous system-targeted expression of the complement inhibitor sCrry prevents experimental allergic encephalomyelitis. J. Immunol. 163, 6551–6556 (1999).

    CAS  PubMed  Google Scholar 

  22. Morgan, B. P. & Walport, M. J. Complement deficiency and disease. Immunol. Today 12, 301–306 (1991).

    Article  CAS  Google Scholar 

  23. Colten, H. R. & Rosen, F. S. Complement deficiencies. Annu. Rev. Immunol. 10, 809–834 (1992).

    Article  CAS  Google Scholar 

  24. Wang, Y., Rollins, S. A., Madri, J. A. & Matis, L. A. Anti-C5 monoclonal antibody therapy prevents collagen-induced arthritis and ameliorates established disease. Proc. Natl Acad. Sci. USA 92, 8955–8959 (1995).

    Article  CAS  Google Scholar 

  25. Malkiel, S., Kuan, A. P. & Diamond, B. Autoimmunity in heart disease: mechanisms and genetic susceptibility. Mol. Med. Today 2, 336–342 (1996).

    Article  CAS  Google Scholar 

  26. Huber, S. A., Job, L. P. & Woodruff, J. F. Lysis of infected myofibers by coxsackievirus B-3-immune T lymphocytes. Am. J. Pathol. 98, 681–694 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Afanasyeva, M. et al. Experimental autoimmune myocarditis in A/J mice is an IL-4 dependent disease with a Th2 phenotype. Am. J. Pathol. 159, 193–203 (2001).

    Article  CAS  Google Scholar 

  28. Lane, J. R., Neumann, D. A., Lafond-Walker, A., Herskowitz, A. & Rose, N. R. Interleukin 1 or tumor necrosis factor can promote Coxsackie B3-induced myocarditis in resistant B10.A mice. J. Exp. Med. 175, 1123–1129 (1992).

    Article  CAS  Google Scholar 

  29. Lane, J. R., Neumann, D. A., Lafond-Walker, A., Herskowitz, A. & Rose, N. R. Role of IL-1 and tumor necrosis factor in coxsackie virus-induced autoimmune myocarditis. J. Immunol. 151, 1682–1690 (1993).

    CAS  PubMed  Google Scholar 

  30. Wang, Y., Afanasyeva, M., Hill, S. L. & Rose, N. R. Characterization of murine autoimmune myocarditis induced by self and foreign cardiac myosin. Autoimmunity 31, 151–162 (1999).

    Article  CAS  Google Scholar 

  31. Neumann, D. A., Lane, J. R., Allen, G. S., Herskowitz, A. & Rose, N. R. Viral myocarditis leading to cardiomyopathy: do cytokines contribute to pathogenesis? Clin. Immunol. Immunopathol. 68, 181–190 (1993).

    Article  CAS  Google Scholar 

  32. Pummerer, C., Berger, P., Fruhwirth, M., Ofner, C. & Neu, N. Cellular infiltrate, major histocompatibility antigen expression and immunopathogenic mechanisms in cardiac myosin-induced myocarditis. Lab. Invest. 65, 538–547 (1991).

    CAS  PubMed  Google Scholar 

  33. Smith, S. C. & Allen, P. M. Expression of myosin-class II major histocompatibility complexes in the normal myocardium occurs before induction of autoimmune myocarditis. Proc. Natl Acad. Sci. USA 89, 9131–9135 (1992).

    Article  CAS  Google Scholar 

  34. Wang, Y. C. et al. Influence of cytokines and immunosuppressive drugs on major histocompatibility complex class I/II expression by human cardiac myocytes in vitro. Hum. Immunol. 31, 123–133 (1991).

    Article  CAS  Google Scholar 

  35. Carter, R. H. & Fearon, D. T. CD19: lowering the threshold for antigen receptor stimulation of B lymphocytes. Science 256, 105–107 (1992).

    Article  CAS  Google Scholar 

  36. Fischer, M. B. et al. Dependence of germinal center B cells on expression of CD21/CD35 for survival. Science 280, 582–585 (1998).

    Article  CAS  Google Scholar 

  37. Baiu, D. C. et al. Modulation of the humoral immune response by antibody-mediated antigen targeting to complement receptors and Fc receptors. J. Immunol. 162, 3125–3130 (1999).

    CAS  PubMed  Google Scholar 

  38. Newman, S. L., Devery-Pocius, J. E., Ross, G. D. & Henson, P. M. Phagocytosis by human monocyte-derived macrophages. Independent function of receptors for C3b (CR1) and iC3b (CR3). Complement 1, 213–227 (1984).

    Article  CAS  Google Scholar 

  39. Kerekes, K., Prechl, J., Bajtay, Z., Jozsi, M. & Erdei, A. A further link between innate and adaptive immunity: C3 deposition on antigen-presenting cells enhances the proliferation of antigen-specific T cells. Int. Immunol. 10, 1923–1930 (1998).

    Article  CAS  Google Scholar 

  40. Delibrias, C. C., Fischer, E., Bismuth, G. & Kazatchkine, M. D. Expression, molecular association, and functions of C3 complement receptors CR1 (CD35) and CR2 (CD21) on the human T cell line HPB-ALL. J. Immunol. 149, 768–774 (1992).

    CAS  PubMed  Google Scholar 

  41. Fischer, E., Delibrias, C. & Kazatchkine, M. D. Expression of CR2 (the C3dg/EBV receptor, CD21) on normal human peripheral blood T lymphocytes. J. Immunol. 146, 865–869 (1991).

    CAS  PubMed  Google Scholar 

  42. Delibrias, C. C., Mouhoub, A., Fischer, E. & Kazatchkine, M. D. CR1(CD35) and CR2(CD21) complement C3 receptors are expressed on normal human thymocytes and mediate infection of thymocytes with opsonized human immunodeficiency virus. Eur. J. Immunol. 24, 2784–2788 (1994).

    Article  CAS  Google Scholar 

  43. Moir, S. et al. B cells of HIV-1-infected patients bind virions through CD21-complement interactions and transmit infectious virus to activated T cells. J. Exp. Med. 192, 637–646 (2000).

    Article  CAS  Google Scholar 

  44. Kacani, L. et al. Detachment of human immunodeficiency virus type 1 from germinal centers by blocking complement receptor type 2. J. Virol. 74, 7997–8002 (2000).

    Article  CAS  Google Scholar 

  45. Brooimans, R. A., van der Ark, A. A., Buurman, W. A., van Es, L. A. & Daha, M. R. Differential regulation of complement factor H and C3 production in human umbilical vein endothelial cells by IFN-γ and IL-1. J. Immunol. 144, 3835–3840 (1990).

    CAS  PubMed  Google Scholar 

  46. Terui, T. et al. C3 production of cultured human epidermal keratinocytes is enhanced by IFNγ and TNFα through different pathways. J. Invest Dermatol. 108, 62–67 (1997).

    Article  CAS  Google Scholar 

  47. Shiverick, K. T., Thomas, L. L. & Alpert, N. R. Purification of cardiac myosin. Application to hypertrophied myocardium. Biochim. Biophys. Acta 393, 124–133 (1975).

    Article  CAS  Google Scholar 

  48. Kinoshita, T. et al. Characterization of murine complement receptor type 2 and its immunological cross-reactivity with type 1 receptor. Int. Immunol. 2, 651–659 (1990).

    Article  CAS  Google Scholar 

  49. Wiersma, E. J., Kinoshita, T. & Heyman, B. Inhibition of immunological memory and T-independent humoral responses by monoclonal antibodies specific for murine complement receptors. Eur. J. Immunol. 21, 2501–2506 (1991).

    Article  CAS  Google Scholar 

  50. Wang, Y., Afanasyeva, M., Hill, S. L., Kaya, Z. & Rose, N. R. Nasal administration of cardiac myosin suppresses autoimmune myocarditis in mice. J. Am. Coll. Cardiol. 36, 1992–1999 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Caturegli, E. A. Stafford, M. V. Talor, W. M. Baldwin III, S. Mirshahidi and C. L. Burek for critically reading the manuscript and for technical advice. Supported by NIH grants ES07141, HL33878, HL65100 (to N. R. R.) and AI31105 (to V. M. H.). Z. K. was supported by the Deutsche Herzstiftung. T. T. was supported by the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noel R. Rose.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaya, Z., Afanasyeva, M., Wang, Y. et al. Contribution of the innate immune system to autoimmune myocarditis: a role for complement. Nat Immunol 2, 739–745 (2001). https://doi.org/10.1038/90686

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/90686

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing