Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CD91: a receptor for heat shock protein gp96

Abstract

Antigen presenting cells (APCs) can take up exogenous antigenic peptides chaperoned by heat shock protein gp96 and re-present them through the endogenous pathway on their major histocompatibility class I molecules. The high efficiency of this process has been attributed previously to a receptor for gp96 on APCs. The CD91 molecule (also called α2-macroglobulin receptor or the low density lipoprotein–related protein) is shown here to be a cell surface receptor for the heat shock protein gp96. CD91 binds gp96 directly, rather than through another ligand for CD91. The previously known CD91 ligand, α2-macroglobulin, inhibits re-presentation of gp96-chaperoned antigenic peptides by macrophages, as do antibodies to CD91. As gp96 is exclusively intracellular and is released as a result of necrotic but not apoptotic cell death, we propose that CD91 acts as a sensor for necrotic cell death.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of an 80-kD protein as a putative gp96 receptor.
Figure 2: Antiserum to p80 detects an 80-kD molecule and inhibits re-presentation of gp96-chaperoned AH1 peptide by macrophage.
Figure 3: Protein microsequencing revealed that p80 is CD91.
Figure 4: α2-macroglobulin (α2M) and monoclonal antibody (mAb) to CD91 inhibit re-presentation of gp96-chaperoned AH1 peptide by APC.
Figure 5: CD91 as a sensor of necrotic cell death.

Similar content being viewed by others

References

  1. Bevan, M.J. Antigen presentation to cytotoxic T lymphocytes in vivo. J. Exp. Med. 182, 639–641 (1995).

    Article  CAS  Google Scholar 

  2. Suto, R. & Srivastava, P.K. A mechanism for the specific immunogenicity of heat shock protein - chaperoned peptides. Science 269, 1585–1588 ( 1995).

    Article  CAS  Google Scholar 

  3. Srivastava, P.K., Ménoret, A., Basu, S., Binder, R.J. & McQuade, K.L. Heat Shock proteins come of age: primitive functions acquire new roles in an adaptive world. Immunity 8, 657–665 ( 1998).

    Article  CAS  Google Scholar 

  4. Ishii, T. et al. Isolation of MHC class I – restricted tumor antigen peptide and its precursors associated with heat shock proteins hsp70, hsp90, and gp96 . J. Immunol. 162, 1303– 1309 (1999).

    CAS  PubMed  Google Scholar 

  5. Nieland, J.D. et al. Chimeric papillomavirus virus-like particles elicit antitumor immunity against the E7 oncoprotein in an HPV16 tumor model. Proc. Natl Acad. Sci. USA 95, 1800–1805 (1998).

    Article  Google Scholar 

  6. Arnold, D., Faath, S., Rammensee, H. & Schild, H. Cross-priming of minor histocompatibility antigen-specific cytotoxic T cells upon immunization with the heat shock protein gp96. J. Exp. Med. 182, 885–889 (1995).

    Article  CAS  Google Scholar 

  7. Breloer, M., Marti, T., Fleischer, B. & von Bonin, A. Isolation of processed, H-2Kb-binding ovalbumin-derived peptides associated with the stress proteins HSP70 and gp96. Eur. J. Immunol. 28, 1016–1021 (1998).

    Article  CAS  Google Scholar 

  8. Ménoret, A. & Srivastava, P.K. Association of peptides with the heat shock protein gp96 occurs in vivo and is not a post-cell lysis event. Biochem. Biophys. Res. Commun. 262, 813–818 (1999).

    Article  Google Scholar 

  9. Tamura, Y., Peng, P., Liu, K., Daou, M. & Srivastava, P.K. Immunotherapy of tumors with autologous tumor-derived heat shock protein preparations. Science 278, 117–120 (1997).

    Article  CAS  Google Scholar 

  10. Blachere, N.E. et al. Heat shock protein-peptide complexes, reconstituted in vitro, elicit peptide-specific cytotoxic T lymphocyte response and tumor immunity. J. Exp. Med. 186, 1183– 1406 (1997).

    Article  Google Scholar 

  11. Udono, H., Levey, D.L. & Srivastava, P.K. Cellular requirements for tumor - specific immunity elicited by heat shock proteins: Tumor rejection antigen gp96 primes CD8+ T cells in vivo. Proc. Natl Acad. Sci. USA 91, 3077–3081 (1994).

    Article  CAS  Google Scholar 

  12. Srivastava, P.K., Udono, H., Blachere, N.E. & Li, Z. Heat shock proteins transfer peptides during antigen processing and CTL priming . Immunogenetics 39, 93– 98 (1994).

    Article  CAS  Google Scholar 

  13. Binder, R.J., Ménoret, A. & Srivastava, P.K. Receptor-dependent and receptor-independent re-presentation of heat-shock protein-chaperoned peptides. Cell Stress Chap. 3, 2 (1998).

    Google Scholar 

  14. Arnold-Schild, D. et al. Cutting edge: receptor-mediated endocytosis of heat shock proteins by professional antigen-presenting cells. J. Immunol. 162, 3757–3760 ( 1999).

    CAS  PubMed  Google Scholar 

  15. Wassenberg, J.J., Dezfulian, C. & Nicchitta, C.V. Receptor mediated and fluid phase pathways for internalization of the ER Hsp90 chaperone GRP94 in murine macrophages. J. Cell Sci. 112, 2167–2175 ( 1999).

    CAS  PubMed  Google Scholar 

  16. Singh-Jasuja, H. et al. Cross-Presentation of Glycoprotein 96-associated Antigens on Major Histocompatibility Complex Class I Molecules Requires Receptor-mediated Endocytosis. J. Exp. Med. 191, 1965– 1974 (2000).

    Article  CAS  Google Scholar 

  17. Binder, R.J., Harris, M., Menoret, A. & Srivastava, P.K. Saturation, competition and specificity in interaction of heat shock proteins gp96, hsp90 and hsp70 with CD11b+ cells. J. Immunol. (2000) (in the press).

  18. Binder, R.J., Basu, S, Anderson, K.M. & Srivastava, P.K. RAW264.7 but not RAW309Cr.1 cells can re-present HSP-chaperoned peptides. J. Immunol. (2000) (submitted).

  19. Huang, A.Y. et al. The immunodominant major histocompatibility complex class I-restricted antigen of a murine colon tumor derives from an endogenous retroviral gene product. Proc. Natl Acad. Sci. USA 93, 9730–9735 (1996).

    Article  CAS  Google Scholar 

  20. Strickland, D.K. et al. Sequence identity between the α2-macroglobulin receptor and low density lipoprotein receptor-related protein suggests that this molecule is a multifunctional receptor. J. Biol. Chem. 265, 17401–17404 (1990).

    CAS  PubMed  Google Scholar 

  21. Kristensen, T. et al. Evidence that the newly cloned low-density-lipoprotein receptor related protein (LRP) is the α2-macroglobulin receptor. FEBS Lett. 276, 151–155 (1990).

    Article  CAS  Google Scholar 

  22. Van Leuven, F. et al. Molecular cloning and sequencing of the murine α 2-macroglobulin receptor cDNA. Biochim. Biophys. Acta 1173, 71–74 (1993).

    Article  CAS  Google Scholar 

  23. O'Connor-McCourt, M.D. & Wakefield, L.M. Latent transforming growth factor β in serum: a specific complex with α2-macroglobulin . J. Biol. Chem. 262, 14090– 14099 (1987).

    CAS  PubMed  Google Scholar 

  24. Huang, J.S., Huang, S.S. & Deuel, T.F. Specific covalent binding of platelet-derived growth factor to human plasma α2-macroglobulin. Proc. Natl Acad. Sci. USA 81, 342–346 (1984).

    Article  CAS  Google Scholar 

  25. Dennis, P.A., Saksela, O., Harpel, P. & Rifkin, D.B. α 2-macroglobulin is a binding protein for basic fibroblast growth factor . J. Biol. Chem. 264, 7210– 7216 (1989).

    CAS  PubMed  Google Scholar 

  26. Orth, K., Madison, E.L., Gething, M.J., Sambrook, J.F. & Herz, J. Complexes of tissue-type plasminogen activator and its serpin inhibitor plasminogen-activator inhibitor type 1 are internalized by means of the low density lipoprotein receptor-related protein/α2-macroglobulin receptor. Proc. Natl Acad. Sci. USA 89, 7422–7426 (1992).

    Article  CAS  Google Scholar 

  27. Nykjaer, A. et al. Purified α2-macroglobulin receptor/LDL receptor-related protein binds urokinase.plasminogen activator inhibitor type-1 complex. Evidence that the α2-macroglobulin receptor mediates cellular degradation of urokinase receptor-bound complexes. J. Biol. Chem. 267, 14543–14546 (1992).

    CAS  PubMed  Google Scholar 

  28. Jensen, P.E.H. & Pizzo, S.V. Comparison of α 2-macroglobulin receptors from human, baboon, rat, and mouse liver. Biochem. Arch. 5, 171–176 (1989).

    CAS  Google Scholar 

  29. Maki, R.G., Eddy, R.L., Byers, M., Shows, T.B. & Srivastava, P.K. Mapping of the genes for human endoplasmic reticular HSP gp96/grp94. Somat. Cell Mol. Gen. 19, 73–81 (1993).

    Article  CAS  Google Scholar 

  30. Hilliker, C., Van Leuven, F. & Van den Berghe, H. Assignment of the gene coding for the α2 -macroglobulin receptor to mouse chromosome 15 and to human chromosome 12q13-q14 by isotopic and non-isotopic in situ hybridization. Genomics 13, 472–474 ( 1992).

    Article  CAS  Google Scholar 

  31. Basu, S, Binder, R.J., Suto, R., Anderson, K.M. & Srivastava, P.K. Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a maturation signal to dendritic cells and activate the NF-κB pathway. Int. Immunol. ( 2000) (submitted).

  32. Savill, J., Hogg, N., Ren, Y. & Haslett, C. Thrombospondin cooperates with CD36 and the vitronectin receptor in macrophage recognition of neutrophils undergoing apoptosis. J. Clin. Invest. 90, 1513–1522 (1992).

    Article  CAS  Google Scholar 

  33. Fadok, V.A. et al. A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature 405, 85–90 (2000).

    Article  CAS  Google Scholar 

  34. Matzinger, P. An innate sense of danger. Semin Immunol. 10, 399–415 (1998).

    Article  CAS  Google Scholar 

  35. Srivastava, P.K., DeLeo, A.B. & Old, L.J. Tumor rejection antigens of chemically induced sarcomas of inbred mice. Proc. Natl Acad. Sci. USA 83, 3407–3411 (1986).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Supported by NIH grants CA64394 and CA84479, and a research agreement with Antigenics Inc., in which P.K.S. has a significant financial interest. We thank S. Basu for sharing unpublished observations and for refining and making available the re-presentation assay, T. Matsutake, K. Anderson and R. Berlin for discussion and evaluation of experiments, and D. Ritsick for assistance with the cross-linking studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramod K. Srivastava.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Binder, R., Han, D. & Srivastava, P. CD91: a receptor for heat shock protein gp96. Nat Immunol 1, 151–155 (2000). https://doi.org/10.1038/77835

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/77835

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing