Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

IL-18 induction of IgE: dependence on CD4+ T cells, IL-4 and STAT6

Abstract

Overproduction of immunoglobulin E (IgE) and T helper cell type 2 (T H2) cytokines, including interleukin 4 (IL-4), IL-5 and IL-13, can result in allergic disorders. Although it is known that IL-4 is critical to the polarization of naïve CD4+ T cells to a TH2 phenotype, both in vitro and in many in vivo systems, other factors that regulate in vivo IL-4 production and TH2 commitment are poorly understood. IL-18, an IL-1–like cytokine that requires cleavage with caspase-1 to become active, was found to increase IgE production in a CD4+ T cells, IL-4– and STAT6–dependent fashion. IL-18 and T cell receptor–mediated stimulation could induce naïve CD4+ T cells to develop into IL-4–producing cells in vitro. Thus, caspase-1 and IL-18 may be critical in regulation of IgE production in vivo, providing a potential therapeutic target for allergic disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: IL-18–induced IgE, IL-4 and IL-13 production in vivo is dependent on CD4+ T cells.
Figure 2: IL-18–induced IgE production in vivo is dependent on IL-4.
Figure 3: IL-18 secreted in caspase-1 Tg mice induced IgE production in vivo by activation of STAT6.
Figure 4: IL-18 stimulated CD4+ T cells to up-regulate CD40L expression and to cause B cells to produce IgE in vitro.
Figure 5: IL-18 stimulates naïve CD4+ T cells to develop into TH2 cells in the presence of TCR engagement in vitro.
Figure 6: IL-18 expression in patients suffering from leprosy.

Similar content being viewed by others

References

  1. Coffman, R.L. et al. The role of helper T cell products in mouse B cell differentiation and isotype regulation. Immunol. Rev. 102, 5–28 (1988).

    Article  CAS  Google Scholar 

  2. Finkelman, F.D. et al. Lymphokine control of in vivo immunoglobulin isotype selection. Annu. Rev. Immunol. 8, 303– 333 (1990).

    Article  CAS  Google Scholar 

  3. Punnonen, J. et al. Interleukin 13 induces interleukin 4-independent IgG4 and IgE synthesis and CD23 expression by human B cells. Proc. Natl Acad. Sci. USA 90, 3730–3734 (1993).

    Article  CAS  Google Scholar 

  4. Zurawski, G. & de Vries, J.E.J. Interleukin 13, an interleukin 4-like cytokine that acts on monocytes and B cells, but not on T cells. Immunol. Today. 15, 19–26 (1994).

    Article  CAS  Google Scholar 

  5. Wills, K.M. et al. Interleukin-13: central mediator of allergic asthma. Science 282, 2258–2261 ( 1998).

    Article  Google Scholar 

  6. Grunig, G. et al. Requirement for IL-13 independently of IL-4 in experimental asthma . Science 282, 2261–2263 (1998).

    Article  CAS  Google Scholar 

  7. Hilton, D.J. et al. Cloning and characterization of a binding subunit of the interleukin 13 receptor that is also a component of the interleukin 4 receptor. Proc. Natl Acad. Sci. USA 93, 497– 501 (1996).

    Article  CAS  Google Scholar 

  8. Okamura, H. et al. Cloning of a new cytokine that induces IFN-γ production by T cells. Nature 378, 88– 91 (1995).

    Article  CAS  Google Scholar 

  9. Gu, Y. et al. Activation of interferon-γ inducing factor mediated by interleukin-1β converting enzyme. Science 275, 206– 209 (1997).

    Article  CAS  Google Scholar 

  10. Okamura, H., Tsutsui, H., Kashiwamura, S., Yoshimoto, T. & Nakanishi, K. Interleukin-18: A novel cytokine that augments both innate and acquired immunity. Adv. Immunol. 70, 281–312 ( 1998).

    Article  CAS  Google Scholar 

  11. Dinarello, C.A. et al. Overview of interleukin-18: more than an interferon-γ inducing factor. J. Leukoc.Biol. 63, 658 –664 (1998).

    Article  CAS  Google Scholar 

  12. Kohno, K. et al. IFN-γ–inducing factor (IGIF) is a costimulatory factor on the activation of Th1 but not Th2 cells and exerts its effect independently of IL-12. J. Immunol. 158, 1541– 1550 (1997).

    CAS  PubMed  Google Scholar 

  13. Robinson, D. et al. IGIF does not drive Th1 development but synergizes with IL-12 for interferon-γ production and activates IRAK and NFκB. Immunity 7, 571–581 ( 1997).

    Article  CAS  Google Scholar 

  14. Yoshimoto, T. et al. IL-12 up-regulates IL-18 receptor expression on T cells, Th1 cells, and B cells: synergism with IL-18 for IFN-γ production. J. Immunol. 161, 3400–3407 (1998).

    CAS  PubMed  Google Scholar 

  15. Xu, D. et al. Selective expression and functions of interleukin 18 receptor on T helper (Th) type 1 but not Th2 cells. J. Exp. Med. 188, 1485–1492 (1998).

    Article  CAS  Google Scholar 

  16. Tsutsui, H. et al. IL-18 accounts for both TNF—- and FasL-mediated hepatotoxic pathways in endotoxin-induced liver injury. J. Immunol. 159, 3961–3967 (1997).

    CAS  PubMed  Google Scholar 

  17. Yoshimoto, T., Okamura, H., Tagawa, Y.I., Iwakura, Y. & Nakanishi, K. Interleukin 18 together with interleukin 12 inhibits IgE production by induction of interferon-γ production from activated B cells. Proc. Natl Acad. Sci. USA 94, 3948–3953 (1997).

    Article  CAS  Google Scholar 

  18. Yoshimoto, T. et al. IL-18, although antiallergic when administered with IL-12, stimulates IL-4 and histamine release by basophils. Proc. Natl Acad. Sci. USA 96, 13962–13966 (1999).

    Article  CAS  Google Scholar 

  19. Kumano, K. et al. Interleukin-18 enhances antigen-induced eosinophil recruitment into the mouse airways. Am. J. Respir. Crit. Care. Med. 160, 873–878 (1999).

    Article  CAS  Google Scholar 

  20. Hoshino, T., Wiltrout, R.H. & Young, H.A. IL-18 is a potent coinducer of IL-13 in NK and T cells: A new potential role for IL-18 in modulating the immune response. J. Immunol. 162, 5070–5077 (1999).

    CAS  PubMed  Google Scholar 

  21. Yamanaka, K. et al. Skin-specific caspase-1 transgenic mice show cutaneous apoptosis and pre-endotoxin shock condition with a high serum level of IL-18. J. Immunol. (2000) (in the press).

  22. Noben-Trauth, N. et al. An interleukin 4 (IL-4)-independent pathway for CD4+ T cell IL-4 production is revealed in IL-4 receptor-deficient mice . Proc. Natl Acad. Sci. USA 94, 10838– 10843 (1997).

    Article  CAS  Google Scholar 

  23. Noben-Trauth, N., Kohler, G., Burki, K. & Ledermann, B. Efficient targeting of the IL-4 gene in a BALB/c embryonic stem cell line. Transgenic Res. 5, 487–491 (1996).

    Article  CAS  Google Scholar 

  24. Urban, J.J. et al. IL-13, IL-4Rα, and Stat6 are required for the expulsion of the gastrointestinal nematode parasite Nippostrongylus brasiliensis . Immunity 8, 255–264 (1998).

    Article  CAS  Google Scholar 

  25. Takeda, K. et al. Essential role of Stat6 in IL-4 signalling. Nature 380, 627–630 ( 1996).

    Article  CAS  Google Scholar 

  26. Takeda, K. et al. Defective NK cell activity and Th1 response in IL-18–deficient mice. Immunity 8, 583–590 (1998).

    Article  Google Scholar 

  27. Murphy, K.M., Heimberger, A.B. & Loh, D.Y. Induction by antigen of intrathymic apoptosis of CD4+CD8+TCRlo thymocytes in vivo. Science 250, 1720–1723 ( 1990).

    Article  CAS  Google Scholar 

  28. Salgame, P. et al. Differing lymphokine profiles of functional subsets of human CD4 and CD8 T cell clones. Science 254, 279–282 (1991).

    Article  CAS  Google Scholar 

  29. Stoll, S. et al. Production of IL-18 (IFN-γ–inducing factor) messenger RNA and functional protein by murine keratinocytes. J. Immunol. 159, 298–302 ( 1997).

    CAS  PubMed  Google Scholar 

  30. Ghayur, T. et al. Caspase-1 processes IFN-γ–inducing factor and regulates LPS-induced IFN-γ production. Nature 386, 619–623 (1997).

    Article  CAS  Google Scholar 

  31. Paul, W.E., Seder, R.A. & Plaut, M. Lymphokine and cytokine production by Fcɛ RI+ cells. Adv. Immunol. 53, 1– 29 (1993).

    Article  CAS  Google Scholar 

  32. Cameron, L.A. et al. Airway epithelium expresses interleukin-18. Eur. Respir. J. 14, 553–559 ( 1999).

    Article  CAS  Google Scholar 

  33. Ohara, J. & Paul, W.E. Production of monoclonal antibody to and molecular characterization of B-cell stimulatory factor-1. Nature 315, 333–336 ( 1985).

    Article  CAS  Google Scholar 

  34. LeGros, G.G., Ben-Sasson, S.S., Seder, R.A., Finkelman, F.D. & Paul, W.E. Generation of interleukin 4 (IL-4)–producing cells in vivo and in vitro: IL-2 and IL-4 are required for in vitro generation of IL-4–producing cells. J. Exp. Med. 172, 921–929 ( 1990).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Hayashibara Biochemical Laboratories Inc. for providing recombinant murine IL-18, S. Akira and K. Takeda at Osaka University for STAT6−/− and IL-18−/− mice, M. Kobayashi and the Research Support Team at Genetic Institute for murine sIL-13Pα—Fc and H. Fukui for excellent technical assistance. Supported by Grant-in-Aid for Scientific Research and Hitech Research Center grant from the Ministry of Education, Science and Culture of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Nakanishi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshimoto, T., Mizutani, H., Tsutsui, H. et al. IL-18 induction of IgE: dependence on CD4+ T cells, IL-4 and STAT6. Nat Immunol 1, 132–137 (2000). https://doi.org/10.1038/77811

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/77811

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing