Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Response of naïve and memory CD8+ T cells to antigen stimulation in vivo

Abstract

We studied the influence of memory T cell properties on the efficiency of secondary immune responses by comparing the in vivo immune response of the same numbers of T cell receptor (TCR) transgenic (Tg) naïve and memory T cells. Compared to naïve Tg cells, memory cells divided after a shorter lag time; had an increased division rate; a lower loss rate; and showed more rapid and efficient differentiation to effector functions. We found that initial naïve T cell priming resulted in cells expressing mutually exclusive effector functions, whereas memory T cells were multifunctional after reactivation, with each individual cell expressing two to three different effector functions simultaneously. These special properties of memory T cells ensure the immediate control of reinfection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expansion of naïve and memory cells.
Figure 2: Early events of cell activation.
Figure 3: The role of antigen stimulation in Tg cell division in T cell-deficient hosts.
Figure 4: Progression through the division of naïve and memory T cells.
Figure 5: RNA content of naïve and memory cells.
Figure 6: Expression of lymphokine mRNA by individual cells ex vivo.

Similar content being viewed by others

References

  1. Owen, J.A., Allouche, M. & Doherty, P.C. Limiting dilution analysis of the specificity of influenza-immune cytotoxic T cells. Cell. Immunol. 67, 49–59 (1982).

    CAS  PubMed  Google Scholar 

  2. Ahmed, R. & Gray, D. Immunological memory and protective immunity: understanding their relation. Science 272, 54–60 (1996).

    CAS  PubMed  Google Scholar 

  3. Doherty, P.C., Topham, D.J. & Tripp, R.A. Establishment and persistence of virus-specific CD4+ and CD8+ T cells memory. Immunol. Rev. 150, 23–44 (1996).

    CAS  PubMed  Google Scholar 

  4. Flynn, K. J. et al. Virus-specific CD8+ T cells in primary and secondary influenza pneumonia. Immunity 8, 683–691 (1998).

    CAS  Google Scholar 

  5. Murali-Krishna, K. et al. Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity 8, 177–187 (1998).

    CAS  PubMed  Google Scholar 

  6. Busch, D.H. & Pamer, E.G. T cell affinity maturation by selective expansion during infection. J. Exp. Med. 189, 701–10 (1999).

    CAS  PubMed  Google Scholar 

  7. McHeyzer-Williams, L.J., Panus, J.F., Mikszta, J.A. & McHeyzer-Williams, M.G. Evolution of antigen-specific T cell receptors in vivo: preimmune and antigen-driven selection of preferred complementarity-determining region 3 (CDR3) motifs. J. Exp. Med. 189, 1823–38 (1999).

    CAS  PubMed  Google Scholar 

  8. Savage, P.A., Boniface, J.J. & Davis, M.M. A kinetic basis for T cell receptor repertoire selection during an immune response. Immunity 10, 485–921 (1999).

    CAS  PubMed  Google Scholar 

  9. Selin, L. K. et al. Attrition of T cell memory: Selective loss of LCMV epitope-specific memory CD8 T cells following infections with heterologous viruses. Immunity 11, 733–742 (1999).

    CAS  PubMed  Google Scholar 

  10. Budd, R.C. et al. Distinction of virgin and memory T lymphocytes. Stable acquisition of the Pgp-1 glycoprotein concomitant with antigenic stimulation. J. Immunol. 138, 3120–3129 (1987).

    CAS  PubMed  Google Scholar 

  11. Bruno, L., Kirberg, J. & von Boehmer, H. On the cellular basis of immunological T cell memory. Immunity 2, 37–43 (1995).

    CAS  PubMed  Google Scholar 

  12. Tanchot, C. et al. Differential requirements for survival and proliferation of CD8 naïve or memory T cells. Science 276, 2057–2062 (1997).

    CAS  PubMed  Google Scholar 

  13. Curtsinger, J.M., Lins, D.C. & Mescher, M.F. CD8+ memory T cells (CD44high, Ly-6C+) are more sensitive than naive cells (CD44low, Ly-6C-) to TcR/CD8 signaling in response to antigen. J. Immunol. 160, 3236–3243 (1998).

    CAS  PubMed  Google Scholar 

  14. Tanchot, C. et al. Modifications of CD8+ T cell function during in vivo memory or tolerance induction. Immunity 8, 581–590 (1998).

    CAS  PubMed  Google Scholar 

  15. Cho, B. K. et al. Functional differences between memory and naive CD8 T cells. Proc. Natl Acad. Sci. USA 96, 2976–2981 (1999).

    CAS  PubMed  Google Scholar 

  16. Garcia, S., DiSanto, J. & Stockinger, B. Following the Development of a CD4 T cell response in vivo: from activation to memory formation. Immunity 11, 163–171 (1999).

    CAS  Google Scholar 

  17. Zimmermann, C., Prevost-Blondel, A., Blaser, C. & Pircher, H. Kinetics of the response of naive and memory CD8 T cells to antigen: similarities and differences. Eur. J. Immunol. 29, 284–290 (1999).

    CAS  PubMed  Google Scholar 

  18. Bachmann, M.F., Barner, M., Viola, A. & Kopf, M. Distinct kinetics of cytokine production and cytolysis in effector and memory T cells after viral infection. Eur. J. Immunol. 29, 291–299 (1999).

    CAS  PubMed  Google Scholar 

  19. Tanchot, C. & Rocha, B. The organization of mature T cell pools. Immunol. Today 19, 575–579 (1998).

    CAS  PubMed  Google Scholar 

  20. Shinkai, Y. et al. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68, 855–867 (1992).

    CAS  Google Scholar 

  21. Kisielow, P et al. Tolerance in T cell receptor transgenic mice involves deletion of nonmature CD4+CD8+ thymocytes. Nature 333, 742–746 (1988).

    CAS  PubMed  Google Scholar 

  22. Rocha, B., Grandien, A. & Freitas, A.A. Anergy and exhaustion are independent mechanisms of peripheral tolerance. J. Exp. Med. 181, 993–1003 (1995).

    CAS  PubMed  Google Scholar 

  23. McLean, A. R. et al. Resourse competition as a mechanism for B cell homeostasis. Proc. Natl Acad. Sci. USA 94, 5792–5797 (1997).

    CAS  PubMed  Google Scholar 

  24. Borghans, J.A.M., Taams, L.S., Wauben, M.H.M. & De Boer, R. Competition for antigenic sites during T cell proliferation: a mathematical interpretation of in vitro data. Proc. Natl Acad. Sci. USA 96, 10782–10787 (1999).

    CAS  PubMed  Google Scholar 

  25. Tripp, R.A., Lahti, J.M. & Doherty, P.C. Laser light suicide of proliferating virus-specific CD8+ T cells in an in vivo response. J. Immunol. 155, 3719–3721 (1995).

    CAS  PubMed  Google Scholar 

  26. Sprent, J., Tough, D.F. & Sun, S. Factors controlling the turnover of T memory cells. Immunol. Rev. 156, 79–85 (1997).

    CAS  Google Scholar 

  27. Leslie, P.H. Some further notes on the use of matrices in population mathematics. Biometrika 35, 213–245 (1948).

    Google Scholar 

  28. De Boer, R.J. & Noest, A.J. T cell renewal rates, telomerase and telomere length shortening. J. Immunol. 160, 5832–5837 (1998).

    CAS  PubMed  Google Scholar 

  29. Karulin, A.Y., Hesse, M.D., Tary-Lehmann, M. & Lehmann, P.V. Single-cytokine-producing CD4 memory cells predominate in type 1 and type 2 immunity. J. Immunol. 164, 1862–1872 (2000).

    CAS  PubMed  Google Scholar 

  30. Valitutti, S. et al. Serial triggering of many T-cell receptors by a few peptide-MHC complexes. Nature 11, 148–151 (1995).

    Google Scholar 

  31. Bachmann, M.F. et al. Developmental regulation of Lck targeting to the CD8 coreceptor controls signaling in naive and memory T cells. J. Exp. Med. 189, 1521–1529 (1999).

    CAS  PubMed  Google Scholar 

  32. Mackay, C.R. Migration pathways and immunologic memory among T lymphocytes. Semin. Immunol. 4, 51–58 (1992).

    CAS  PubMed  Google Scholar 

  33. Brown, K.E. et al. Dynamic repositioning of genes in the nucleus of lymphocytes preparing for cell division. Mol. Cell. 3, 207–217 (1999).

    CAS  PubMed  Google Scholar 

  34. Agarwal, S. & Rao, A. Modulation of chromatin structure regulates cytokine gene expression during T cell differentiation. Immunity 9, 765–775 (1998).

    CAS  PubMed  Google Scholar 

  35. Lewin, B. The mystique of epigenetics. Cell 93, 301–303 (1998).

    CAS  PubMed  Google Scholar 

  36. Fitzpatrick, D.R., Shirley, K.M. & Kelso, A. Stable epigenetic inheritance of regional IFN-gamma promoter demethylation in CD44 high CD8+ T lymphocytes. J. Immunol. 162, 5053–5057 (1999).

    CAS  PubMed  Google Scholar 

  37. Swain, S.L. et al. From naive to memory T cells. Immunol Rev. 150, 143–167 (1996).

    CAS  PubMed  Google Scholar 

  38. Gett, A. & Hodgkin, P.D. Cell division regulates the T cell cytokine repertoire, revealing a mechanism underlying immune class regulation. Proc. Natl Acad. Sci. USA 95, 9488–9493 (1998).

    CAS  PubMed  Google Scholar 

  39. Bird, J.J. et al. Helper T cell differentiation is controlled by the cell cycle. Immunity 9, 229–237 (1998).

    CAS  PubMed  Google Scholar 

  40. Richter, A., Lohning, M. & Radbruch, A. Instruction for cytokine expression in T helper lymphocytes in relation to proliferation and cell progression. J. Exp. Med. 190, 1439–1450 (1999).

    CAS  PubMed  Google Scholar 

  41. Gudmundsdottir, H., Wells, A.D. & Turka, L.A. Dynamics and requirements of T cell clonal expansion in vivo at the single-cell level: effector function is linked to proliferative capacity. J. Immunol. 162, 5212–5223 (1999).

    CAS  PubMed  Google Scholar 

  42. Sad, S. & Mosmann, T.R. Single IL-2 secreting precursor CD4 T cell can develop into either Th1 or Th2 cytokine secretion phenotype. J. Immunol. 153, 3514–3522 (1994).

    CAS  PubMed  Google Scholar 

  43. Viola, A. & Lanzavecchia, A. T cell activation determined by T cell receptor number and tunable thresholds. Science 273, 104–106 (1996).

    CAS  Google Scholar 

  44. Itoh, Y. & Germain, R.N. Single cell analysis reveals regulated hierarchical T cell antigen receptor signaling thresholds and intraclonal heterogenety for individual cytokine responses of CD4+ T cells. J. Exp. Med. 186, 757–766 (1997).

    CAS  PubMed  Google Scholar 

  45. Waldorp, S.L., Davis, K.A., Maino, V.C. & Picker, L.J. Normal human CD4+ memory cells display broad heterogenety in their activation threshold for cytokine synthesis. J. Immunol. 161, 5282–5295 (1998).

    Google Scholar 

  46. Weaver, C.T. Heterogeneity in the clonal T cell response: implications for models of T cell activation and cytokine phenotype development. Immunol. Res. 17, 279–302 (1998).

    CAS  PubMed  Google Scholar 

  47. Nutt, S.L., Heavey, B., Rolink, A.G. & Busslinger, M. Commitment to B-lymphoid lineage depends on the transcription factor Pax5. Nature 401, 556–562 (1999).

    CAS  PubMed  Google Scholar 

  48. Selin, L.K. & Welsh, R.M. Cytolytically active memory CTL present in lymphocytic choriomeningitis virus-immune mice after clearance of virus infection. J. Immunol. 158, 5366–5373 (1997).

    CAS  PubMed  Google Scholar 

  49. Opferman, J.T., Ober, B.T. & Ashton-Rickardt, P.G. Linear differentiation of cytotoxic effectors into memory T lymphocytes. Science 283, 1745–1748 (1999).

    CAS  PubMed  Google Scholar 

  50. Naramura, M., Hu, R. & Gu, H. Mice with a fluorescent marker for interleukin 2 gene activation. Immunity 9, 209–216 (1998).

    CAS  Google Scholar 

  51. Saparov, A. et al. Interleukin-2 expression by a subpopulation of primary T cells is linked to enhanced memory/effector function. Immunity 11, 271–280 (1999).

    CAS  PubMed  Google Scholar 

  52. Malissen, M. et al. Altered T cell development in mice with a targeted mutation of the CD3 ɛ gene. EMBO J. 14, 4641–4653 (1995).

    CAS  PubMed  Google Scholar 

  53. Teh, H.S. et al. Thymic major histocompatibility complex antigens and the αβ T-cell receptor determine the CD4/CD8 phenotype of T cells. Nature 335, 229–233 (1988).

    CAS  PubMed  Google Scholar 

  54. Lyons, A.B. & Parish, C.R. Determination of lymphocyte division by flow cytometry. J. Immunol. Methods. 171, 131–137 (1994).

    CAS  PubMed  Google Scholar 

  55. Tafuri, A. et al. Combination of hematopoietic growth factors containing IL-3 induce acute myeloid leukemia cell sensitization to cycle specific and cycle non-specific drugs. Leukemia 8, 749–757 (1994).

    CAS  PubMed  Google Scholar 

  56. Loffert, D., Ehlich, A., Muller, W. & Rajewsky, K. Surrogate light chain expression is required to establish immunoglobulin heavy chain allelic exclusion during early B cell development. Immunity 4, 133–144 (1996).

    CAS  PubMed  Google Scholar 

  57. Pannetier, C. et al. Quantitative titration of nucleic acids by enymatic amplification reactions run to saturation. Nucleic Acids Res. 21, 577–583 (1993).

    CAS  PubMed  Google Scholar 

  58. Taswell, C. Limiting dilution assays for the determination of immunocompetent cell frequencies. III. Validity tests for the single-hit Poisson model. J. Immunol. Methods 72, 29–40 (1984).

    CAS  PubMed  Google Scholar 

  59. Siminovitch, L., McCulloch, E.A. & Till, J E. The distribution of colony forming cells among spleen colonies. J. Cell Comp. Physiol. 62, 327–336 (1963).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Garcia for cell sorting; A.M. Joret and S. Leaument for technical assistance; A. Le Campion for statistics; J. Di Santo, A.A. Freitas, D. Guy-Grand, A. Sarukhan and H. von Boehmer for reviewing the manuscript. This work was supported by grants from the National Association of AIDS Research, France. H.V.-F. was supported by a grant from Technology and Science Foundation, Praxis XXI, Portugal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrique Veiga-Fernandes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veiga-Fernandes, H., Walter, U., Bourgeois, C. et al. Response of naïve and memory CD8+ T cells to antigen stimulation in vivo. Nat Immunol 1, 47–53 (2000). https://doi.org/10.1038/76907

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/76907

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing