Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Naïve CTLs require a single brief period of antigenic stimulation for clonal expansion and differentiation

Abstract

In defense of the host, the immune system must often raise an effective cytotoxic T lymphocyte (CTL) response from a small number of clonal precursors. The degree to which activation stimuli regulate the expansion and differentiation of naïve CTLs, however, remains unknown. Using an engineered antigen-presenting cell (APC) system that allows control over antigenic stimulation, we studied the signaling duration requirements for priming and clonal expansion of naïve CTLs. We found that naïve CTLs become committed after as little as 2 h of exposure to APCs and that their subsequent division and differentiation can occur without the need for further antigenic stimulation of the daughter cells, whether priming is in vitro or in vivo. These data show that after a brief interaction with stimulatory APCs, naïve CTLs initiate a program for their autonomous clonal expansion and development into functional effectors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Engineered APCs induce primary activation of OT-I cells.
Figure 2: A brief antigenic stimulation leads to rapid antigen-independent CTL expansion.
Figure 3: The antigenic stimulus leading to OT-I priming is not transferred to the second culture well.
Figure 4: Expansion kinetics of CTLs primed in vitro or in vivo.
Figure 5: Primed CTLs expand in vitro or in vivo in the absence of antigen.
Figure 6: Surface TCR reappears when CTLs are separated from APCs.
Figure 7: Development of effector function in the absence of antigen.

Similar content being viewed by others

References

  1. Harty, J. T., Tvinnereim, A. R. & White, D. W. CD8+ T cell effector mechanisms in resistance to infection. Annu. Rev. Immunol. 18, 275–308 (2000).

    Article  CAS  Google Scholar 

  2. Bevan, M. J. Antigen presentation to cytotoxic T lymphocytes in vivo. J. Exp. Med. 182, 639–641 (1995).

    Article  CAS  Google Scholar 

  3. Lanzavecchia, A. From antigen presentation to T-cell activation. Res. Immunol. 149, 626 (1998).

    Article  CAS  Google Scholar 

  4. Banchereau, J. et al. Immunobiology of dendritic cells. Annu. Rev. Immunol 18, 767–811 (2000).

    Article  CAS  Google Scholar 

  5. Heath, W. R., Kurts, C., Miller, J. & Carbone, F. R. Cross-tolerance: A pathway for inducing tolerance to peripheral tissue antigens. J. Exp. Med. 187, 1549–1553 (1998).

    Article  CAS  Google Scholar 

  6. Garza, K. M. et al. Role of Antigen-presenting Cells in Mediating Tolerance and Autoimmunity. J. Exp. Med. 191, 2021–2028 (2000).

    Article  CAS  Google Scholar 

  7. Sotomayor, E. M. et al. Conversion of tumor-specific CD4+ T-cell tolerance to T-cell priming through in vivo ligation of CD40. Nature Med. 5, 780–787 (1999).

    Article  CAS  Google Scholar 

  8. Keene, J. & Forman, J. Helper activity is required for the in vivo generation of cytotoxic T lymphocytes. J. Exp. Med. 155, 768–782 (1982).

    Article  CAS  Google Scholar 

  9. Bennett, S. R. M., Carbone, F. R., Karamalis, F., Miller, J. F. A. P. & Heath, W. R. Induction of a CD8+ cytotoxic T lymphocyte response by cross-priming requires cognate CD4+ T cell help. J. Exp. Med. 186, 65–70 (1997).

    Article  CAS  Google Scholar 

  10. Schoenberger, S. P. et al. T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature 393, 480–483 (1998).

    Article  CAS  Google Scholar 

  11. Bennett, S. R. et al. Help for cytotoxic-T-cell responses is mediated by CD40 signaling. Nature 393 478–480 (1998).

    Article  CAS  Google Scholar 

  12. Ridge, J. P., Di Rosa, F. & Matzinger, P. A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 393, 474–478 (1998).

    Article  CAS  Google Scholar 

  13. Gallucci, S., Lolkema, M. & Matzinger, P. Natural adjuvants: endogenous activators of dendritic cells. Nature Med. 5, 1249–1255 (1999).

    Article  CAS  Google Scholar 

  14. Cella, M. et al. Maturation, activation, and protection of dendritic cells induced by double-stranded RNA. J. Exp. Med. 189, 821–829 (1999).

    Article  CAS  Google Scholar 

  15. Sauter, B. et al. Consequences of cell death: exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J. Exp. Med. 191, 423–434 (2000).

    Article  CAS  Google Scholar 

  16. Binder, R. J., Anderson, K. M., Basu, S. & Srivastava, P. K. Cutting edge: heat shock protein gp96 induces maturation and migration of CD11c+ cells in vivo. J. Immunol. 165, 6029–6035 (2000).

    Article  CAS  Google Scholar 

  17. Basu, S., Binder, R. J., Suto, R., Anderson, K. M. & Srivastava, P. K. Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-κB pathway. Int. Immunol. 12, 1539–1546 (2000).

    Article  CAS  Google Scholar 

  18. Lafferty, K. J. & Cunningham, A. J. A new analysis of allogeneic interactions. Aust. J. Exp. Biol. Med. Sci. 53, 27–42 (1975).

    Article  CAS  Google Scholar 

  19. Slavik, J. M., Hutchcroft, J. E. & Bierer, B. E. CD28/CTLA-4 and CD80/CD86 families: signaling and function. Immunol. Res. 19, 1–24 (1999).

    Article  CAS  Google Scholar 

  20. Lanzavecchia, A. & Sallusto, F. From synapses to immunological memory: the role of sustained T cell stimulation. Curr. Opin. Immunol. 12, 92–98 (2000).

    Article  CAS  Google Scholar 

  21. Viola, A., Schroeder, S., Sakakibara, Y. & Lanzavecchia, A. T lymphocyte costimulation mediated by reorganization of membrane microdomains. Science 283, 680–682 (1999).

    Article  CAS  Google Scholar 

  22. Borriello, F. et al. B7–1 and B7-2 have overlapping, critical roles in immunoglobulin class switching and germinal center formation. Immunity 6, 303–313 (1997).

    Article  CAS  Google Scholar 

  23. McAdam, A. J., Farkash, E. A., Gewurz, B. E. & Sharpe, A. H. B7 costimulation is critical for antibody class switching and CD8+ cytotoxic T-lymphocyte generation in the host response to vesicular stomatitis virus. J. Virol. 74, 203–208 (2000).

    Article  CAS  Google Scholar 

  24. McAdam, A. J., Gewurz, B. E., Farkash, E. A. & Sharpe, A. H. Either B7 costimulation or IL-2 can elicit generation of primary alloreactive CTL. J. Immunol. 165, 3088–3093 (2000).

    Article  CAS  Google Scholar 

  25. Santra, S. et al. Functional Equivalency of B7–1 and B7-2 for Costimulating Plasmid DNA Vaccine-Elicited CTL Responses. J. Immunol. 165, 6791–6795 (2000).

    Article  CAS  Google Scholar 

  26. Lanzavecchia, A. Dendritic cell maturation and generation of immune responses. Haematologica 84, 23–25 (1999).

    PubMed  Google Scholar 

  27. Schoenberger, S. P. et al. Efficient direct priming of tumor-specific cytotoxic T lymphocyte in vivo by an engineered APC. Cancer. Res. 58, 3094–3100 (1998).

    CAS  PubMed  Google Scholar 

  28. Sanderson, S. & Shastri, N. LacZ inducible, antigen/MHC-specific T cell hybrids. Int. Immunol. 6, 369–376 (1994).

    Article  CAS  Google Scholar 

  29. Hogquist, K. A. et al. T cell receptor antagonist peptides induce positive selection. Cell 76, 17–27 (1994).

    Article  CAS  Google Scholar 

  30. Lyons, A. B. Divided we stand: tracking cell proliferation with carboxyfluorescein diacetate succinimidyl ester. Immunol. Cell Biol. 77, 509–515 (1999).

    Article  CAS  Google Scholar 

  31. Huang, J. F. et al. TCR-Mediated internalization of peptide-MHC complexes acquired by T cells. Science 286, 952–954 (1999).

    Article  CAS  Google Scholar 

  32. Hwang, I. et al. T cells can use either T cell receptor or CD28 receptors to absorb and internalize cell surface molecules derived from antigen-presenting cells. J. Exp. Med. 191, 1137–1148 (2000).

    Article  CAS  Google Scholar 

  33. Nikolic-Zugic, J. & Bevan, M. J. Role of self-peptides in positively selecting the T-cell repertoire. Nature 344, 65–67 (1990).

    Article  CAS  Google Scholar 

  34. Bronstein-Sitton, N., Wang, L., Cohen, L. & Baniyash, M. Expression of the T cell antigen receptor ζ chain following activation is controlled at distinct checkpoints. Implications for cell surface receptor down-modulation and re-expression. J. Biol. Chem. 274, 23659–23665 (1999).

    Article  CAS  Google Scholar 

  35. San Jose, E., Borroto, A., Niedergang, F., Alcover, A. & Alarcon, B. Triggering the TCR complex causes the downregulation of nonengaged receptors by a signal transduction-dependent mechanism. Immunity 12, 161–170 (2000).

    Article  CAS  Google Scholar 

  36. Viola, A. & Lanzavecchia, A. T cell activation determined by T cell receptor number and tunable thresholds. Science 273, 104–106 (1996).

    Article  CAS  Google Scholar 

  37. Swain, S. L. Lymphokines and the immune response: the central role of interleukin-2. Curr. Opin. Immunol. 3, 304–310 (1991).

    Article  CAS  Google Scholar 

  38. Jelley-Gibbs, D. M., Lepak, N. M., Yen, M. & Swain, S. L. Two distinct stages in the transition from naive CD4 T cells to effectors, early antigen-dependent and late cytokine-driven expansion and differentiation. J. Immunol. 165, 5017–5026 (2000).

    Article  CAS  Google Scholar 

  39. Iezzi, G., Karjalainen, K. & Lanzavecchia, A. The duration of antigenic stimulation determines the fate of naive and effector T cells. Immunity 8, 89–95 (1998).

    Article  CAS  Google Scholar 

  40. Karttunen, J. & Shastri, N. Measurement of ligand-induced activation in single viable T cells using the lacZ reporter gene. Proc. Natl Acad. Sci. USA 88. 3972–3976 (1991).

    Article  CAS  Google Scholar 

  41. Veiga-Fernandes, H., U., W., Bourgeois, C., McLean, A. & Rocha, B. Response of naive and memory CD8+ T cells to antigen stimulation in vivo. Nature Immunol. 1, 47–53 (2000).

    Article  CAS  Google Scholar 

  42. Staudt, L. M. & Brown, P. O. Genomic views of the immune system. Annu. Rev. Immunol. 18, 829–859 (2000).

    Article  CAS  Google Scholar 

  43. Murali-Krishna, K. et al. In vivo dynamics of anti-viral CD8 T cell responses to different epitopes. An evaluation of bystander activation in primary and secondary responses to viral infection. Adv. Exp. Med. Biol. 452, 123–142 (1998).

    Article  CAS  Google Scholar 

  44. Murali-Krishna, K. et al. Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity 8, 177–187 (1998).

    Article  CAS  Google Scholar 

  45. Kurts, C., Kosaka, H., Carbone, F. R., Miller, J. F. A. P. & Heath, W. R. Class I-restricted cross-presentation of exogenous self-antigens leads to deletion of autoreactive CD8+ T cells. J. Exp. Med. 186, 239–245 (1997).

    Article  CAS  Google Scholar 

  46. Zhang, J., MacLennan, I. C., Liu, Y. J. & Lane, P. J. Is rapid proliferation in B centroblasts linked to somatic mutation in memory B cell clones? Immunol. Lett. 18, 297–299 (1988).

    Article  CAS  Google Scholar 

  47. Matzinger, P. The JAM test. A simple assay for DNA fragmentation and cell death. J. Immunol. Meth. 145, 185–192 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Palioungas, P. Houshmand, K. Banks and the staff of the LIAI animal facility for excellent care and screening of mice. We also thank F. Koning and E. Sercarz for critical evaluation of the manuscript. Supported by the American Cancer Society (to S. P. S.) and the Dutch Cancer Society (to M. J. B. v. S).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen P. Schoenberger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Stipdonk, M., Lemmens, E. & Schoenberger, S. Naïve CTLs require a single brief period of antigenic stimulation for clonal expansion and differentiation. Nat Immunol 2, 423–429 (2001). https://doi.org/10.1038/87730

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/87730

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing