Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Constitutive pre-TCR signaling promotes differentiation through Ca2+ mobilization and activation of NF-κB and NFAT

Abstract

Pre-T cell antigen receptor (pre-TCR) signaling plays a crucial role in the development of immature T cells. Although certain aspects of proximal pre-TCR signaling have been studied, the intermediate signal transducers and the distal transcription modulators have been poorly characterized. We report here a correlation between pre-TCR signaling and a biphasic rise in the cytosolic Ca2+ concentration. In addition, we show that constitutive pre-TCR signaling is associated with an increased rate of Ca2+ influx through store-operated plasma membrane Ca2+ channels. We show also that the biphasic nature of the observed pre-TCR–induced rise in cytosolic Ca2+ differentially modulates the activities of the transcription factors NF-κB and NFAT in developing T cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NF-κB is activated at the β-selection checkpoint.
Figure 2: Pre-TCR expression induces activation of NF-κB.
Figure 3: Essential role of NFAT activation during β-selection.
Figure 4: The nature of the pre-TCR-induced biphasic [Ca2+]i increase in pre-TCR+ cells.
Figure 5: Intracellular Ca2+ store depletion-activated Ca2+ influx is reduced in SCIET27 versus SCB29 cells Representative traces of SOCs mediated a rise in (a) [Ca2+]i in WT CD25CD44 and RAG-2−/− CD25+CD44 thymocytes as well as in (b) SCB29 and SCIET27 cells.
Figure 6: Effects of different Ca2+ mobilization inhibitors on the activation of NF-κB and NFAT in the SCB29 cell line.
Figure 7

Similar content being viewed by others

References

  1. von Boehmer, H. & Fehling, H. J. Structure and function of the pre-T cell receptor. Annu. Rev. Immunol. 15, 433–452 (1997).

    Article  CAS  Google Scholar 

  2. Aifantis, I., Buer, J., von Boehmer, H. & Azogui, O. Essential role of the pre-T cell receptor in allelic exclusion of the T cell receptor β locus. Immunity 7, 601–607 (1997).

    Article  CAS  Google Scholar 

  3. Hoffman, E. S. et al. Productive T-cell receptor β-chain gene rearrangement: coincident regulation of cell cycle and clonality during development in vivo. Genes Dev. 10, 948–962 (1996).

    Article  CAS  Google Scholar 

  4. Aifantis, I. et al. Allelic exclusion of the T cell receptor β locus requires the SH2 domain-containing leukocyte protein (SLP)-76 adaptor protein. J. Exp. Med. 190, 1093–1102 (1999).

    Article  CAS  Google Scholar 

  5. Irving, B. A., Alt, F. W. & Killeen, N. Thymocyte development in the absence of pre-T cell receptor extracellular immunoglobulin domains. Science 280, 905–908 (1998).

    Article  CAS  Google Scholar 

  6. Saint-Ruf, C. et al. Different initiation of pre-TCR and γδTCR signalling. Nature 406, 524–527 (2000).

    Article  CAS  Google Scholar 

  7. von Boehmer, H. et al. Pleiotropic changes controlled by the pre-T cell receptor. Curr. Opin. Immunol. 11, 135–142 (1999).

    Article  CAS  Google Scholar 

  8. Fischer, A. & Malissen, B. Natural and engineered disorders of lymphocyte development. Science 280, 237–243 (1998).

    Article  CAS  Google Scholar 

  9. Karin, M. & Ben-Neriah, Y. Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu. Rev. Immunol. 18, 621–663 (2000).

    Article  CAS  Google Scholar 

  10. Attar, R. M. et al. Genetic approaches to study Rel/NF-κB/IκB function in mice. Semin. Cancer Biol. 8, 93–101 (1997).

    Article  CAS  Google Scholar 

  11. Horwitz, B. H., Scott, M. L., Cherry, S. R., Bronson, R. T. & Baltimore, D. Failure of lymphopoiesis after adoptive transfer of NF-κB–deficient fetal liver cells. Immunity 6, 765–772 (1997).

    Article  CAS  Google Scholar 

  12. Bakker, T. R., Renno, T. & Jongeneel, C. V. Impaired fetal thymocyte development after efficient adenovirus-mediated inhibition of NF-κB activation. J. Immunol. 162, 3456–3462 (1999).

    CAS  PubMed  Google Scholar 

  13. Voll, R. E. et al. NF-κB activation by the pre-T cell receptor serves as a selective survival signal in T lymphocyte development. Immunity 13, 677–689 (2000).

    Article  CAS  Google Scholar 

  14. Crabtree, G. R. & Clipstone, N. A. Signal transmission between the plasma membrane and nucleus of T lymphocytes. Annu. Rev. Biochem. 63, 1045–1083 (1994).

    Article  CAS  Google Scholar 

  15. Grakoui, A. et al. The immunological synapse: a molecular machine controlling T cell activation. Science 285, 221–217 (1999).

    Article  CAS  Google Scholar 

  16. Valge, V. E., Wong, J. G., Datlof, B. M., Sinskey, A. J. & Rao, A. Protein kinase C is required for responses to T cell receptor ligands but not to interleukin-2 in T cells. Cell 55, 101–112 (1988).

    Article  CAS  Google Scholar 

  17. Schaeffer, E. M. & Schwartzberg, P. L. Tec family kinases in lymphocyte signaling and function. Curr. Opin. Immunol. 12, 282–288 (2000).

    Article  CAS  Google Scholar 

  18. Putney, J. W. Jr Capacitative calcium entry revisited. Cell Calcium 11, 611–624 (1990).

    Article  CAS  Google Scholar 

  19. Putney, J. W. Jr & McKay, R. R. Capacitative calcium entry channels. Bioessays 21, 38–46 (1999).

    Article  Google Scholar 

  20. Hoth, M. & Penner, R. Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355, 353–356 (1992).

    Article  CAS  Google Scholar 

  21. Partiseti, M. et al. The calcium current activated by T cell receptor and store depletion in human lymphocytes is absent in a primary immunodeficiency. J. Biol. Chem. 269, 32327–32335 (1994).

    CAS  PubMed  Google Scholar 

  22. Rao, A., Luo, C. & Hogan, P. G. Transcription factors of the NFAT family: regulation and function. Annu. Rev. Immunol. 15, 707–747 (1997).

    Article  CAS  Google Scholar 

  23. Dolmetsch, R. E., Lewis, R. S., Goodnow, C. C. & Healy, J. I. Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature 386, 855–858 (1997).

    Article  CAS  Google Scholar 

  24. Levelt, C. N., Ehrfeld, A. & Eichmann, K. Regulation of thymocyte development through CD3. I. Timepoint of ligation of CD3ɛ determines clonal deletion or induction of developmental program. J. Exp. Med. 177, 707–716 (1993).

    Article  CAS  Google Scholar 

  25. Shinkai, Y. & Alt, F. W. CD3 epsilon-mediated signals rescue the development of CD4+CD8+ thymocytes in RAG-2−/− mice in the absence of TCRβ chain expression. Int. Immunol. 6, 995–1001 (1994).

    Article  CAS  Google Scholar 

  26. Groettrup, M. et al. A novel disulfide-linked heterodimer on pre-T cells consists of the T cell receptor β chain and a 33 kd glycoprotein. Cell 75, 283–294 (1993).

    Article  CAS  Google Scholar 

  27. Henkel, T. et al. Rapid proteolysis of IκB-α is necessary for activation of transcription factor NF-κB. Nature 365, 182–185 (1993).

    Article  CAS  Google Scholar 

  28. Kiani, A., Rao, A. & Aramburu, J. Manipulating immune responses with immunosuppressive agents that target NFAT. Immunity 12, 359–372 (2000).

    Article  CAS  Google Scholar 

  29. Baeuerle, P. A. & Henkel, T. Function and activation of NF-κB in the immune system. Annu. Rev. Immunol. 12, 141–179 (1994).

    Article  CAS  Google Scholar 

  30. Vassilopoulos, D., Smallridge, R. C. & Tsokos, G. C. Effects of an aminosteroid inhibitor of phospholipase C-dependent processes on the TCR-mediated signal transduction pathway in human T cells. Clin. Immunol. Immunopathol. 77, 59–68 (1995).

    Article  CAS  Google Scholar 

  31. Hoth, M., Button, D. C. & Lewis, R. S. Mitochondrial control of calcium-channel gating: a mechanism for sustained signaling and transcriptional activation in T lymphocytes. Proc. Natl Acad. Sci. USA 97, 10607–10612 (2000).

    Article  CAS  Google Scholar 

  32. Fomina, A. F., Fanger, C. M., Kozak, J. A. & Cahalan, M. D. Single channel properties and regulated expression of Ca2+ release-activated Ca2+ (CRAC) channels in human T cells. J. Cell Biol. 150, 1435–1444 (2000).

    Article  CAS  Google Scholar 

  33. Tando, Y. et al. Caerulein-induced NF-κB/Rel activation requires both Ca2+ and protein kinase C as messengers. Am. J. Physiol. 277, 678–686 (1999).

    Google Scholar 

  34. von Boehmer, H., Aifantis, I., Azogui, O., SaintRuf, C., Grassi, F. The Impact of Pre-T Cell Receptor Signals on Gene Expression in Developing T Cells. Cold Spring Harb. Symp. Quant. Biol.. 64, 283–289 (1999).

    Article  CAS  Google Scholar 

  35. Feuillard, J. et al. In vivo identification of lymphocyte subsets exhibiting transcriptionally active NF-κB/Rel complexes. Int. Immunol 12, 613–621 (2000).

    Article  CAS  Google Scholar 

  36. Voll, R. E. & Ghosh, S. Role of NF-κB in T-lympocyte development. Cold Spring Harb. Symp. Quant. Biol. 64, 485–490 (1999).

    Article  CAS  Google Scholar 

  37. McCaffrey, P. G. et al. Isolation of the cyclosporin-sensitive T cell transcription factor NFATp. Science 262, 750–754 (1993).

    Article  CAS  Google Scholar 

  38. Amasaki, Y., Masuda, E. S., Imamura, R., Arai, K. & Arai, N. Distinct NFAT family proteins are involved in the nuclear NFAT-DNA binding complexes from human thymocyte subsets. J. Immunol. 160, 2324–2333 (1998).

    CAS  PubMed  Google Scholar 

  39. Yoshida, H. et al. The transcription factor NFATc1 regulates lymphocyte proliferation and Th2 cytokine production. Immunity 8, 115–124 (1998).

    Article  CAS  Google Scholar 

  40. Grumont, R. J., Rourke, I. J. & Gerondakis, S. Rel-dependent induction of A1 transcription is required to protect B cells from antigen receptor ligation-induced apoptosis. Genes Dev. 13, 400–411 (1999).

    Article  CAS  Google Scholar 

  41. Tamatani, M. et al. Tumor necrosis factor induces Bcl-2 and Bcl-x expression through NFκB activation in primary hippocampal neurons. J. Biol. Chem. 274, 8531–8538 (1999).

    Article  CAS  Google Scholar 

  42. Zong, W. X., Edelstein, L. C., Chen, C., Bash, J. & Gelinas, C. The prosurvival Bcl-2 homolog Bfl-1/A1 is a direct transcriptional target of NF-κB that blocks TNFα-induced apoptosis. Genes Dev. 13, 382–387 (1999).

    Article  CAS  Google Scholar 

  43. Van Antwerp, D. J., Martin, S. J., Verma, I. M. & Green, D. R. Inhibition of TNF-induced apoptosis by NF-κB. Trends Cell Biol. 8, 107–111 (1998).

    Article  CAS  Google Scholar 

  44. Wang, C. Y., Mayo, M. W., Korneluk, R. G., Goeddel, D. V. & Baldwin, A. S. Jr NF-κB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 281, 1680–1683 (1998).

    Article  CAS  Google Scholar 

  45. Linette, G. P., Li, Y., Roth, K. & Korsmeyer, S. J. Cross talk between cell death and cell cycle progression: BCL-2 regulates NFAT-mediated activation. Proc. Natl Acad. Sci. USA 93, 9545–9552 (1996).

    Article  CAS  Google Scholar 

  46. Shibasaki, F., Kondo, E., Akagi, T. & McKeon, F. Suppression of signalling through transcription factor NFAT by interactions between calcineurin and Bcl-2. Nature 386, 728–731 (1997).

    Article  CAS  Google Scholar 

  47. Guttridge, D. C., Albanese, C., Reuther, J. Y., Pestell, R. G. & Baldwin, A. S. Jr NF-κB controls cell growth and differentiation through transcriptional regulation of cyclin D1. Mol. Cell Biol. 19, 5785–5799 (1999).

    Article  CAS  Google Scholar 

  48. Hinz, M. et al. NF-κB function in growth control: regulation of cyclin D1 expression and G0/G1-to-S-phase transition. Mol. Cell Biol. 19, 2690–2698 (1999).

    Article  CAS  Google Scholar 

  49. Okamura, R. M. et al. Redundant regulation of T cell differentiation and TCRα gene expression by the transcription factors LEF-1 and TCF-1. Immunity 8, 11–20 (1998).

    Article  CAS  Google Scholar 

  50. Zitt, C. et al. Cloning and functional expression of a human Ca2+-permeable cation channel activated by calcium store depletion. Neuron 16, 1189–1196 (1996).

    Article  CAS  Google Scholar 

  51. Acuto, O. & Cantrell, D. T cell activation and the cytoskeleton. Annu. Rev. Immunol. 18, 165–184 (2000).

    Article  CAS  Google Scholar 

  52. Alkon, D. L. & Rasmussen, H. A spatial-temporal model of cell activation. Science 239, 998–1005 (1988).

    Article  CAS  Google Scholar 

  53. Tuosto, L. et al. Mitogen-activated kinase kinase kinase 1 regulates T cell receptor- and CD28-mediated signaling events which lead to NF-κB activation. Eur. J. Immunol. 30, 2445–2454 (2000).

    Article  CAS  Google Scholar 

  54. Woodrow, M., Clipstone, N. A. & Cantrell, D. p21ras and calcineurin synergize to regulate the nuclear factor of activated T cells. J. Exp. Med. 178, 1517–1522 (1993).

    Article  CAS  Google Scholar 

  55. Gartner, F. et al. Immature thymocytes employ distinct signaling pathways for allelic exclusion versus differentiation and expansion. Immunity 10, 537–546 (1999).

    Article  CAS  Google Scholar 

  56. Iritani, B. M., Alberola-Ila, J., Forbush, K. A. & Perimutter, R. M. Distinct signals mediate maturation and allelic exclusion in lymphocyte progenitors. Immunity 10, 713–722 (1999).

    Article  CAS  Google Scholar 

  57. Shinkai, Y. et al. RAG-2–deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68, 855–867 (1992).

    Article  CAS  Google Scholar 

  58. Porcellini, S., Panigada, M. & Grassi, F. Molecular and cellular aspects of induced thymus development in recombinase-deficient mice. Eur. J. Immunol. 29, 2476–2483 (1999).

    Article  CAS  Google Scholar 

  59. Schreiber, E., Matthias, P., Muller, M. M. & Schaffner, W. Rapid detection of octamer binding proteins with 'mini-extracts', prepared from a small number of cells. Nucleic Acids Res. 17, 6419 (1989).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. A. Smith for help with the preparing the manuscript, S. Hoeflinger for technical assistance and S. Korsmeyer, V. Boussiotis, S. Zinkel, S. Simeonidis and N. Danial for material and valuable discussions. Supported by National Institutes of Health grant number R01AI45846 (to H. v. B.) and the Eugenia Spanopoulou Irvington Institute (to I. A.). C. B. is supported by the Division of Medical Sciences of Harvard University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald von Boehmer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aifantis, I., Gounari, F., Scorrano, L. et al. Constitutive pre-TCR signaling promotes differentiation through Ca2+ mobilization and activation of NF-κB and NFAT. Nat Immunol 2, 403–409 (2001). https://doi.org/10.1038/87704

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/87704

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing