TH-17 cells in the circle of immunity and autoimmunity

Abstract

CD4+ effector T cells have been categorized into two subsets: T helper type 1 (TH1) and TH2. Another subset of T cells that produce interleukin 17 (IL-17; 'TH-17 cells') has been identified that is highly proinflammatory and induces severe autoimmunity. Whereas IL-23 serves to expand previously differentiated TH-17 cell populations, IL-6 and transforming growth factor-β (TGF-β) induce the differentiation of TH-17 cells from naive precursors. These data suggest a dichotomy between CD4+ regulatory T cells positive for the transcription factor Foxp3 and TH-17 cells: TGF-β induces Foxp3 and generates induced regulatory T cells, whereas IL-6 inhibits TGF-β-driven Foxp3 expression and together with TGF-β induces TH-17 cells. Emerging data regarding TH-17 cells suggest a very important function for this T cell subset in immunity and disease.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Differentiation of CD4+ T cell lineages.
Figure 2: Selective induction of T cell subsets with TGF-β in association with other cytokines.
Figure 3: The cytokine milieu: a determining factor in the development of the immune response.

References

  1. 1

    Mosmann, T.R. & Coffman, R.L. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu. Rev. Immunol. 7, 145–173 (1989).

    CAS  Article  Google Scholar 

  2. 2

    Abbas, A.K., Murphy, K.M. & Sher, A. Functional diversity of helper T lymphocytes. Nature 383, 787–793 (1996).

    CAS  Article  Google Scholar 

  3. 3

    Shevach, E.M. From vanilla to 28 flavors: multiple varieties of T regulatory cells. Immunity 25, 195–201 (2006).

    CAS  Article  Google Scholar 

  4. 4

    Sakaguchi, S. Regulatory T cells: key controllers of immunologic self-tolerance. Cell 101, 455–458 (2000).

    CAS  Article  Google Scholar 

  5. 5

    Faria, A.M. & Weiner, H.L. Oral tolerance and TGF-beta-producing cells. Inflamm. Allergy Drug Targets 5, 179–190 (2006).

    CAS  Article  Google Scholar 

  6. 6

    Wan, Y.Y. & Flavell, R.A. The roles for cytokines in the generation and maintenance of regulatory T cells. Immunol. Rev. 212, 114–130 (2006).

    CAS  Article  Google Scholar 

  7. 7

    Willenborg, D.O., Fordham, S., Bernard, C.C., Cowden, W.B. & Ramshaw, I.A. IFN-γ plays a critical down-regulatory role in the induction and effector phase of myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis. J. Immunol. 157, 3223–3227 (1996).

    CAS  PubMed  Google Scholar 

  8. 8

    Krakowski, M. & Owens, T. Interferon-γ confers resistance to experimental allergic encephalomyelitis. Eur. J. Immunol. 26, 1641–1646 (1996).

    CAS  Article  Google Scholar 

  9. 9

    Willenborg, D.O., Fordham, S.A., Staykova, M.A., Ramshaw, I.A. & Cowden, W.B. IFN-γ is critical to the control of murine autoimmune encephalomyelitis and regulates both in the periphery and in the target tissue: a possible role for nitric oxide. J. Immunol. 163, 5278–5286 (1999).

    CAS  PubMed  Google Scholar 

  10. 10

    Tran, E.H., Prince, E.N. & Owens, T. IFN-γ shapes immune invasion of the central nervous system via regulation of chemokines. J. Immunol. 164, 2759–2768 (2000).

    CAS  Article  Google Scholar 

  11. 11

    Cua, D.J. et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421, 744–748 (2003).

    CAS  Article  Google Scholar 

  12. 12

    Langrish, C.L. et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med. 201, 233–240 (2005).

    CAS  Article  Google Scholar 

  13. 13

    Bettelli, E. & Kuchroo, V.K. IL-12- and IL-23-induced T helper cell subsets: birds of the same feather flock together. J. Exp. Med. 201, 169–171 (2005).

    CAS  Article  Google Scholar 

  14. 14

    Harrington, L.E. et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol. 6, 1123–1132 (2005).

    CAS  Article  Google Scholar 

  15. 15

    Park, H. et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol. 6, 1133–1141 (2005).

    CAS  Article  Google Scholar 

  16. 16

    Veldhoen, M., Hocking, R.J., Atkins, C.J., Locksley, R.M. & Stockinger, B. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24, 179–189 (2006).

    CAS  Article  Google Scholar 

  17. 17

    Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235–238 (2006).

    CAS  Article  Google Scholar 

  18. 18

    Mangan, P.R. et al. Transforming growth factor-β induces development of the TH17 lineage. Nature 441, 231–234 (2006).

    CAS  Article  Google Scholar 

  19. 19

    Aggarwal, S. & Gurney, A.L. IL-17: prototype member of an emerging cytokine family. J. Leukoc. Biol. 71, 1–8 (2002).

    CAS  Google Scholar 

  20. 20

    Moseley, T.A., Haudenschild, D.R., Rose, L. & Reddi, A.H. Interleukin-17 family and IL-17 receptors. Cytokine Growth Factor Rev. 14, 155–174 (2003).

    CAS  Article  Google Scholar 

  21. 21

    Kolls, J.K. & Linden, A. Interleukin-17 family members and inflammation. Immunity 21, 467–476 (2004).

    CAS  Article  Google Scholar 

  22. 22

    Fossiez, F. et al. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J. Exp. Med. 183, 2593–2603 (1996).

    CAS  Article  Google Scholar 

  23. 23

    Ye, P. et al. Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J. Exp. Med. 194, 519–527 (2001).

    CAS  Article  Google Scholar 

  24. 24

    Matusevicius, D. et al. Interleukin-17 mRNA expression in blood and CSF mononuclear cells is augmented in multiple sclerosis. Mult. Scler. 5, 101–104 (1999).

    CAS  Article  Google Scholar 

  25. 25

    Wong, C.K., Ho, C.Y., Li, E.K. & Lam, C.W. Elevation of proinflammatory cytokine (IL-18, IL-17, IL-12) and Th2 cytokine (IL-4) concentrations in patients with systemic lupus erythematosus. Lupus 9, 589–593 (2000).

    CAS  Article  Google Scholar 

  26. 26

    Hashimoto, T., Akiyama, K., Kobayashi, N. & Mori, A. Comparison of IL-17 production by helper T cells among atopic and nonatopic asthmatics and control subjects. Int. Arch. Allergy Immunol. 137, 51–54 (2005).

    CAS  Article  Google Scholar 

  27. 27

    Linden, A., Hoshino, H. & Laan, M. Airway neutrophils and interleukin-17. Eur. Respir. J. 15, 973–977 (2000).

    CAS  Article  Google Scholar 

  28. 28

    Nakae, S., Nambu, A., Sudo, K. & Iwakura, Y. Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice. J. Immunol. 171, 6173–6177 (2003).

    CAS  Article  Google Scholar 

  29. 29

    Bush, K.A., Farmer, K.M., Walker, J.S. & Kirkham, B.W. Reduction of joint inflammation and bone erosion in rat adjuvant arthritis by treatment with interleukin-17 receptor IgG1 Fc fusion protein. Arthritis Rheum. 46, 802–805 (2002).

    CAS  Article  Google Scholar 

  30. 30

    Komiyama, Y. et al. IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J. Immunol. 177, 566–573 (2006).

    CAS  Article  Google Scholar 

  31. 31

    Hofstetter, H.H. et al. Therapeutic efficacy of IL-17 neutralization in murine experimental autoimmune encephalomyelitis. Cell. Immunol. 237, 123–130 (2005).

    CAS  Article  Google Scholar 

  32. 32

    Liang, S.C. et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J. Exp. Med. 203, 2271–2279 (2006).

    CAS  Article  Google Scholar 

  33. 33

    Wolk, K. & Sabat, R. Interleukin-22: a novel T- and NK-cell derived cytokine that regulates the biology of tissue cells. Cytokine Growth Factor Rev. 17, 367–380 (2006).

    CAS  Article  Google Scholar 

  34. 34

    Chung, Y. et al. Expression and regulation of IL-22 in the IL-17-producing CD4+ T lymphocytes. Cell Res. 16, 902–907 (2006).

    CAS  Article  Google Scholar 

  35. 35

    Zheng, Y. et al. Interleukin-22, a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 445, 648–651 (2007).

    CAS  Article  Google Scholar 

  36. 36

    Aggarwal, S., Ghilardi, N., Xie, M.H., de Sauvage, F.J. & Gurney, A.L. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J. Biol. Chem. 278, 1910–1914 (2003).

    CAS  Article  Google Scholar 

  37. 37

    Langrish, C.L. et al. IL-12 and IL-23: master regulators of innate and adaptive immunity. Immunol. Rev. 202, 96–105 (2004).

    CAS  Article  Google Scholar 

  38. 38

    Parham, C. et al. A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rβ1 and a novel cytokine receptor subunit, IL-23R. J. Immunol. 168, 5699–5708 (2002).

    CAS  Article  Google Scholar 

  39. 39

    Mullen, A.C. et al. Role of T-bet in commitment of TH1 cells before IL-12-dependent selection. Science 292, 1907–1910 (2001).

    CAS  Article  Google Scholar 

  40. 40

    Sutton, C., Brereton, C., Keogh, B., Mills, K.H. & Lavelle, E.C. A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. J. Exp. Med. 203, 1685–1691 (2006).

    CAS  Article  Google Scholar 

  41. 41

    Liu, X.K., Clements, J.L. & Gaffen, S.L. Signaling through the murine T cell receptor induces IL-17 production in the absence of costimulation, IL-23 or dendritic cells. Mol. Cells 20, 339–347 (2005).

    CAS  PubMed  Google Scholar 

  42. 42

    Nakae, S. et al. IL-17 production from activated T cells is required for the spontaneous development of destructive arthritis in mice deficient in IL-1 receptor antagonist. Proc. Natl. Acad. Sci. USA 100, 5986–5990 (2003).

    CAS  Article  Google Scholar 

  43. 43

    Pflanz, S. et al. IL-27, a heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation of naive CD4+ T cells. Immunity 16, 779–790 (2002).

    CAS  Article  Google Scholar 

  44. 44

    Hunter, C.A. New IL-12-family members: IL-23 and IL-27, cytokines with divergent functions. Nat. Rev. Immunol. 5, 521–531 (2005).

    CAS  Article  Google Scholar 

  45. 45

    Batten, M. et al. Interleukin 27 limits autoimmune encephalomyelitis by suppressing the development of interleukin 17–producing T cells. Nat. Immunol. 7, 929–936 (2006).

    CAS  Article  Google Scholar 

  46. 46

    Stumhofer, J.S. et al. Interleukin 27 negatively regulates the development of interleukin 17–producing T helper cells during chronic inflammation of the central nervous system. Nat. Immunol. 7, 937–945 (2006).

    CAS  Article  Google Scholar 

  47. 47

    Chen, Y. et al. Anti-IL-23 therapy inhibits multiple inflammatory pathways and ameliorates autoimmune encephalomyelitis. J. Clin. Invest. 116, 1317–1326 (2006).

    CAS  Article  Google Scholar 

  48. 48

    Rangachari, M. et al. T-bet negatively regulates autoimmune myocarditis by suppressing local production of interleukin 17. J. Exp. Med. 203, 2009–2019 (2006).

    CAS  Article  Google Scholar 

  49. 49

    Mathur, A.N. et al. T-bet is a critical determinant in the instability of the IL-17-secreting T-helper phenotype. Blood 108, 1595–1601 (2006).

    CAS  Article  Google Scholar 

  50. 50

    Ivanov, I.I. et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121–1133 (2006).

    CAS  Article  Google Scholar 

  51. 51

    Dzhagalov, I., Zhang, N. & He, Y.W. The roles of orphan nuclear receptors in the development and function of the immune system. Cell. Mol. Immunol. 1, 401–407 (2004).

    CAS  PubMed  Google Scholar 

  52. 52

    Eberl, G. & Littman, D.R. Thymic origin of intestinal αβ T cells revealed by fate mapping of RORγt+ cells. Science 305, 248–251 (2004).

    CAS  Article  Google Scholar 

  53. 53

    Akimzhanov, A.M., Yang, X.O. & Dong, C. Chromatin remodeling at IL17-IL-17F cytokine gene locus during inflammatory helper T cell differentiation. J. Biol. Chem. published online ahead of print 11 January 2007 (doi:10.1074/jbc.C600322200).

    CAS  Article  Google Scholar 

  54. 54

    Powrie, F. & Coffman, R.L. Cytokine regulation of T-cell function: potential for therapeutic intervention. Immunol. Today 14, 270–274 (1993).

    CAS  Article  Google Scholar 

  55. 55

    Khoury, S.J., Hancock, W.W. & Weiner, H.L. Oral tolerance to myelin basic protein and natural recovery from experimental autoimmune encephalomyelitis are associated with downregulation of inflammatory cytokines and differential upregulation of transforming growth factor β, interleukin 4, and prostaglandin E expression in the brain. J. Exp. Med. 176, 1355–1364 (1992).

    CAS  Article  Google Scholar 

  56. 56

    Merrill, J.E. et al. Inflammatory leukocytes and cytokines in the peptide-induced disease of experimental allergic encephalomyelitis in SJL and B10.PL mice. Proc. Natl. Acad. Sci. USA 89, 574–578 (1992).

    CAS  Article  Google Scholar 

  57. 57

    Chitnis, T. et al. Effect of targeted disruption of STAT4 and STAT6 on the induction of experimental autoimmune encephalomyelitis. J. Clin. Invest. 108, 739–747 (2001).

    CAS  Article  Google Scholar 

  58. 58

    Bettelli, E. et al. Loss of T-bet, but not STAT1, prevents the development of experimental autoimmune encephalomyelitis. J. Exp. Med. 200, 79–87 (2004).

    CAS  Article  Google Scholar 

  59. 59

    Lovett-Racke, A.E. et al. Silencing T-bet defines a critical role in the differentiation of autoreactive T lymphocytes. Immunity 21, 719–731 (2004).

    CAS  Article  Google Scholar 

  60. 60

    Panitch, H.S. Interferons in multiple sclerosis. A review of the evidence. Drugs 44, 946–962 (1992).

    CAS  Article  Google Scholar 

  61. 61

    Jones, L.S. et al. IFN-γ-deficient mice develop experimental autoimmune uveitis in the context of a deviant effector response. J. Immunol. 158, 5997–6005 (1997).

    CAS  PubMed  Google Scholar 

  62. 62

    Murphy, C.A. et al. Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J. Exp. Med. 198, 1951–1957 (2003).

    CAS  Article  Google Scholar 

  63. 63

    Segal, B.M., Dwyer, B.K. & Shevach, E.M. An interleukin (IL)-10/IL-12 immunoregulatory circuit controls susceptibility to autoimmune disease. J. Exp. Med. 187, 537–546 (1998).

    CAS  Article  Google Scholar 

  64. 64

    Kaplan, M.H., Sun, Y.L., Hoey, T. & Grusby, M.J. Impaired IL-12 responses and enhanced development of TH2 cells in Stat4-deficient mice. Nature 382, 174–177 (1996).

    CAS  Article  Google Scholar 

  65. 65

    Szabo, S.J. et al. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100, 655–669 (2000).

    CAS  Article  Google Scholar 

  66. 66

    Korn, T. et al. Myelin-specific regulatory T-cells accumulate in the central nervous system, but fail to suppress pathogenic effector T-cells at the peak of autoimmune inflammation. Nat. Med. (in the press).

  67. 67

    Kim, J.M., Rasmussen, J.P. & Rudensky, A.Y. Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat. Immunol. 8, 191–197 (2007).

    CAS  Article  Google Scholar 

  68. 68

    Chen, W. et al. Conversion of peripheral CD4+CD25 naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3. J. Exp. Med. 198, 1875–1886 (2003).

    CAS  Article  Google Scholar 

  69. 69

    Peng, Y., Laouar, Y., Li, M.O., Green, E.A. & Flavell, R.A. TGF-β regulates in vivo expansion of Foxp3-expressing CD4+CD25+ regulatory T cells responsible for protection against diabetes. Proc. Natl. Acad. Sci. USA 101, 4572–4577 (2004).

    CAS  Article  Google Scholar 

  70. 70

    Kretschmer, K. et al. Inducing and expanding regulatory T cell populations by foreign antigen. Nat. Immunol. 6, 1219–1227 (2005).

    CAS  Article  Google Scholar 

  71. 71

    Lohr, J., Knoechel, B., Wang, J.J., Villarino, A.V. & Abbas, A.K. Role of IL-17 and regulatory T lymphocytes in a systemic autoimmune disease. J. Exp. Med. 203, 2785–2791 (2006).

    CAS  Article  Google Scholar 

  72. 72

    Woo, P. et al. Open label phase II trial of single, ascending doses of MRA in Caucasian children with severe systemic juvenile idiopathic arthritis: proof of principle of the efficacy of IL-6 receptor blockade in this type of arthritis and demonstration of prolonged clinical improvement. Arthritis Res. Ther. 7, R1281–R1288 (2005).

  73. 73

    Maini, R.N. et al. Double-blind randomized controlled clinical trial of the interleukin-6 receptor antagonist, tocilizumab, in European patients with rheumatoid arthritis who had an incomplete response to methotrexate. Arthritis Rheum. 54, 2817–2829 (2006).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Supported by the National Multiple Sclerosis Society (V.K.K.; RG3882-A-1 to M.O.; TA 3014A1/1 to E.B.), the National Institutes of Health and the Juvenile Diabetes Foundation (V.K.K.).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vijay K Kuchroo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bettelli, E., Oukka, M. & Kuchroo, V. TH-17 cells in the circle of immunity and autoimmunity. Nat Immunol 8, 345–350 (2007). https://doi.org/10.1038/ni0407-345

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing