Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Essay
  • Published:

A suspenseful game of 'hide and seek' between virus and host

Abstract

As part of the most important contributions to the understanding of viral immunity, Michael Oldstone recounts his pioneering work on lymphocytic choriomeningitis virus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Traub, E. Epidemiology of lymphocytic choriomeningitis in a mouse stock observed for four years. J. Exp. Med. 69, 801–817 (1939).

    Article  CAS  Google Scholar 

  2. Burnet, F.M. & Fenner, F. The Production of Antibodies (ed. Burnet, F.M.) 1–142 (MacMillan, New York, 1949).

    Google Scholar 

  3. Oldstone, M.B.A. & Dixon, F.J. Lymphocytic choriomeningitis: production of anti-LCM antibody by 'tolerant' LCM-infected mice. Science 158, 1193–1194 (1967).

    Article  CAS  Google Scholar 

  4. Oldstone, M.B.A., Aoki, T. & Dixon, F.J. The antibody response of mice to murine leukemia virus in spontaneous infection. Absence of classical immunologic tolerance. Proc. Natl. Acad. Sci. USA 69, 134–138 (1972).

    Article  CAS  Google Scholar 

  5. Zinkernagel, R.M. Lymphocytic choriomeningitis virus and immunology. Curr. Top. Microbiol. Immunol. 263, 1–6 (2002).

    CAS  PubMed  Google Scholar 

  6. Oldstone, M.B.A., Habel, K. & Dixon, F.J. The pathogenesis of cellular injury associated with persistent LCM viral infection. Fed. Proc. 28, 429–432 (1969).

    Google Scholar 

  7. Lundstedt, C. Interaction between antigenically different cells: virus-induced cytotoxicity by immune lymphoid cells in vitro. Acta Pathol. Microbiol. Scand. 75, 139–152 (1969).

    CAS  PubMed  Google Scholar 

  8. Cole, G.A., Nathanson, N. & Prendergast, R.A. Requirement for theta-bearing cells in lymphocytic choriomeningitis virus-induced central nervous system disease. Nature 238, 335–337 (1972).

    Article  CAS  Google Scholar 

  9. Zinkernagel, R.M. & Doherty, P.C. Restriction of in vitro T cell-mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system. Nature 248, 701–702 (1974).

    Article  CAS  Google Scholar 

  10. Ahmed, R. & Gray, D. Immunological memory and protective immunity: Understanding their relation. Science 272, 54–60 (1996).

    Article  CAS  Google Scholar 

  11. Homann, D., Teyton, L. & Oldstone, M.B.A. Differential regulation of antiviral T-cell immunity results in stable CD8+ but declining CD4+ T-cell memory. Nat. Med. 7, 913–919 (2001).

    Article  CAS  Google Scholar 

  12. Oldstone, M.B.A., Blount, P., Southern, P.J. & Lampert, P.W. Cytoimmunotherapy for persistent virus infection: Unique clearance pattern from the central nervous system. Nature 321, 239–243 (1986).

    Article  CAS  Google Scholar 

  13. Volkert, M. & Larsen, J.H. Studies on immunological tolerance to LCM virus. 6. Immunity conferred on tolerant mice by immune sera and by grafts of homologous lymphoid cells. Acta Pathol. Microbiol. Scand. 63, 172–180 (1965).

    Article  CAS  Google Scholar 

  14. Berger, D.P., Homann, D. & Oldstone, M.B.A. Defining parameters for successful immunocytotherapy of persistent viral infection. Virology 266, 257–263 (2000).

    Article  CAS  Google Scholar 

  15. Oldstone, M.B.A. Cytotoxic T-lymphocytes in human viral and malaria infections. Curr. Topics Microbiol. Immunol. 189, 1–186 (1994).

    CAS  Google Scholar 

  16. Ahmed, R., Salmi, A., Butler, L.D., Chiller, J.M. & Oldstone, M.B.A. Selection of genetic variants of lymphocytic choriomeningitis virus in spleens of persistently infected mice. Role in suppression of cytotoxic T lymphocyte response and viral persistence. J. Exp. Med. 160, 521–540 (1984).

    Article  CAS  Google Scholar 

  17. Ahmed, R. & Oldstone, M.B.A. Organ-specific selection of viral variants during chronic infection. J. Exp. Med. 167, 1719–1724 (1988).

    Article  CAS  Google Scholar 

  18. Salvato, M., Shimomaye, E., Southern, P. & Oldstone, M.B.A. Virus-lymphocyte interactions. IV. Molecular characterization of LCMV Armstrong (CTL+) small genomic segment and that of its variant, Clone 13 (CTL-). Virology 164, 517–522 (1988).

    Article  CAS  Google Scholar 

  19. Salvato, M., Borrow, P., Shimomaye, E. & Oldstone, M.B.A. Molecular basis of viral persistence: a single amino acid change in the glycoprotein of lymphocytic choriomeningitis virus is associated with suppression of the antiviral cytotoxic T-lymphocyte response and establishment of persistence. J. Virol. 65, 1863–1869 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Sevilla, N. et al. Immunosuppression and resultant viral persistence by specific viral targeting of dendritic cells. J. Exp. Med. 192, 1249–1260 (2000).

    Article  CAS  Google Scholar 

  21. Dockter, J., Evans, C.F., Tishon, A. & Oldstone, M.B.A. Competitive selection in vivo by a cell for one variant over another: implications for RNA virus quasispecies in vivo. J. Virol. 70, 1799–1803 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Cao, W. et al. Identification of α-dystroglycan as a receptor for lymphocytic choriomeningitis virus and Lassa fever virus. Science 282, 2079–2081 (1998).

    Article  CAS  Google Scholar 

  23. Kunz, S., Sevilla, N., McGavern, D.B., Campbell, K.P. & Oldstone, M.B.A. Molecular analysis of the interaction of LCMV with its cellular receptor α-dystroglycan. J. Cell Biol. 155, 301–310 (2001).

    Article  CAS  Google Scholar 

  24. Sevilla, N., McGavern, D.B., Teng, C., Kunz, S. & Oldstone, M.B.A. Viral targeting of hematopoietic progenitors and inhibition of DC maturation as a dual strategy for immune subversion. J. Clin. Invest. 113, 737–745 (2004).

    Article  CAS  Google Scholar 

  25. Moskophidis, D., Lechner, F., Pircher, H. & Zinkernagel, R.M. Virus persistence in acutely infected immunocompetent mice by exhaustion of antiviral cytotoxic effector T cells. Nature 362, 758–761 (1993).

    Article  CAS  Google Scholar 

  26. Zajac, A.J. et al. Viral immune evasion due to persistence of activated T cells without effector function. J. Exp. Med. 188, 2205–2213 (1998).

    Article  CAS  Google Scholar 

  27. Brooks, D.G., McGavern, D.B. & Oldstone, M.B.A. Reprogramming of antiviral T cells prevents inactivation and restores T cell activity during persistent viral infection. J. Clin. Invest. 116, 1675–1685 (2006).

    Article  CAS  Google Scholar 

  28. Brooks, D.G. et al. Interleukin-10 determines viral clearance or persistence in vivo. Nat. Med. 12, 1301–1309 (2006).

    Article  CAS  Google Scholar 

  29. Barber, D.L. et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439, 682–687 (2006).

    Article  CAS  Google Scholar 

  30. Day, C.L. et al. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 443, 350–354 (2006).

    Article  CAS  Google Scholar 

  31. Trautmann, L. et al. Upregulation of PD-1 expression on HIV-specific CD8+ T cells leads to reversible immune dysfunction. Nat. Med. 12, 1198–1201 (2006).

    Article  CAS  Google Scholar 

  32. Petrovas, C. et al. PD-1 is a regulator of virus-specific CD8+ T cell survival in HIV infection. J. Exp. Med. 203, 2281–2292 (2006).

    Article  CAS  Google Scholar 

  33. Ejrnaes, M. et al. Resolution of a chronic viral infection after interleukin-10 receptor blockade. J. Exp. Med. 203, 2461–2472 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Supported by USPHS (AI009484, AI045927 and AI055540). This is publication number 18587 from The Scripps Research Institute.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oldstone, M. A suspenseful game of 'hide and seek' between virus and host. Nat Immunol 8, 325–327 (2007). https://doi.org/10.1038/ni0407-325

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni0407-325

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing