Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A pathological function for eotaxin and eosinophils in eosinophilic gastrointestinal inflammation

Abstract

Although eosinophils have been implicated in the pathogenesis of gastrointestinal disorders, their function has not been established. Using a murine model of oral antigen–induced eosinophil-associated gastrointestinal disease, we report the pathological consequences of eosinophilic inflammation and the involvement of eotaxin and eosinophils. Exposure of mice to enteric-coated antigen promotes an extensive T helper 2–associated eosinophilic inflammatory response involving the esophagus, stomach, small intestine and Peyer's patches as well as the development of gastric dysmotility, gastromegaly and cachexia. Electron microscopy shows eosinophils in proximity to damaged axons, which indicated that eosinophils were mediating a pathologic response. In addition, mice deficient in eotaxin have impaired eosinophil recruitment and are protected from gastromegaly and cachexia. These results establish a critical pathological function for eotaxin and eosinophils in gastrointestinal allergic hypersensitivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Oral antigen–induced recruitment of eosinophils into the gastrointestinal tract.
Figure 2: Oral antigen–induced gastromegaly and cachexia in wild-type and eotaxin-deficient mice.
Figure 3: Oral antigen–induced pathological changes in the gastrointestinal tract.
Figure 4: Electron microscopic analysis of the jejunum from oral antigen–challenged mice.
Figure 5: Eosinophil quantification in the Peyer's patches and esophagus of wild-type and eotaxin-deficient mice.

Similar content being viewed by others

References

  1. Sampson, H. A. Food allergy. Part 1: immunopathogenesis and clinical disorders. J. Allergy Clin. Immunol. 103, 717–728 (1999).

    Article  CAS  Google Scholar 

  2. Furuta, G. T., Ackerman, S. J. & Wershil, B. K. The role of the eosinophil in gastrointestinal diseases. Curr. Opin. Gastroenterol. 11, 541–547 (1995).

    Article  CAS  Google Scholar 

  3. Sampson, H. A. Food allergy. J. Am. Med. Assoc. 278, 1888–1894 (1997).

    Article  CAS  Google Scholar 

  4. Kelly, K. J. Eosinophilic gastroenteritis. J. Pediatr. Gastroenterol. Nutr. 30 Suppl 28–35 (2000).

    Article  Google Scholar 

  5. Gleich, G. J., Frigas, E., Loegering, D. A., Wassom, D. L. & Steinmuller, D. Cytoxic properties of the eosinophil major basic protein. J. Immunol. 123, 2925–2927 (1979).

    CAS  PubMed  Google Scholar 

  6. Klein, N. C., Hargrove, R. L., Sleisenger, M. H. & Jeffries, G. H. Eosinophilic gastroenteritis. Medicine (Baltimore) 49, 299–319 (1970).

    Article  CAS  Google Scholar 

  7. Cello, J. P. Eosinophilic gastroenteritis: a complex disease entity. Am. J. Med. 67, 1097–1114 (1979).

    Article  CAS  Google Scholar 

  8. Torpier, G. et al. Eosinophilic gastroenteritis: ultrastructural evidence for a selective release of eosinophil major basic protein. Clin. Exp. Immunol. 74, 404–408 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Vandezande, L. M. et al. Interleukin-5 immunoreactivity and mRNA expression in gut mucosa from patients with food allergy. Clin. Exp. Allergy 29, 695–702 (1999).

    Article  Google Scholar 

  10. Keshavarzian, A. et al. Activated eosinophils in familial eosinophilic gastroenteritis. Gastroenterology 88, 1041–1049 (1985).

    Article  CAS  Google Scholar 

  11. Talley, N. J., Shorter, R. G., Phillips, S. F. & Zinsmeister, A. R. Eosinophilic gastroenteritis: a clinicopathological study of patients with disease of the mucosa, muscle layer, and subserosal tissues. Gut 31, 54–58 (1990).

    Article  CAS  Google Scholar 

  12. Desreumaux, P. et al. Interleukin 3, granulocyte-macrophage colony-stimulating factor, and interleukin 5 in eosinophilic gastroenteritis. Gastroenterology 110, 768–774 (1996).

    Article  CAS  Google Scholar 

  13. Lowichik, A. & Weinberg, A. G. A quantitative evaluation of mucosal eosinophils in the pediatric gastrointestinal tract. Mod. Pathol. 9, 110–114 (1996).

    CAS  PubMed  Google Scholar 

  14. Weller, P. F. et al. Role of the eosinophil in allergic reactions. Eur. Respir. J. 22, 109s–115s (1996).

    CAS  Google Scholar 

  15. Gleich, G. J. & Kita, H. Bronchial asthma: lessons from murine models. Proc. Natl Acad. Sci. USA 94, 2101–2102 (1997).

    Article  CAS  Google Scholar 

  16. Schleimer, R. P. & Bochner, B. S. The role of adhesion molecules in allergic inflammation and their suitability as targets of antiallergic therapy. Clin. Exp. Allergy 28 Suppl 3, 15–23 (1998).

    CAS  PubMed  Google Scholar 

  17. Cieslewicz, G. et al. The late, but not early, asthmatic response is dependent on IL-5 and correlates with eosinophil infiltration. J. Clin. Invest. 104, 301–308 (1999).

    Article  CAS  Google Scholar 

  18. Rothenberg, M. E. Eosinophilia. N. Engl. J. Med. 338, 1592–1600 (1998).

    Article  CAS  Google Scholar 

  19. Gutierrez-Ramos, J. C., Lloyd, C. & Gonzalo, J. A. Eotaxin: from an eosinophilic chemokine to a major regulator of allergic reactions. Immunol. Today 20, 500–504 (1999).

    Article  CAS  Google Scholar 

  20. Garcia-Zepeda, E. A. et al. Human eotaxin is a specific chemoattractant for eosinophil cells and provides a new mechanism to explain tissue eosinophilia. Nature Med. 2, 449–456 (1996).

    Article  CAS  Google Scholar 

  21. Hogan, S. P., Mishra, A., Brandt, E. B., Foster, P. S. & Rothenberg, M. E. A critical role for eotaxin in experimental oral antigen-induced eosinophilic gastrointestinal allergy. Proc. Natl Acad. Sci. USA 97, 6681–6686 (2000).

    Article  CAS  Google Scholar 

  22. Rothenberg, M. E. Eotaxin. An essential mediator of eosinophil trafficking into mucosal tissues. Am. J. Respir. Cell Mol. Biol. 21, 291–295 (1999).

    Article  CAS  Google Scholar 

  23. Mishra, A., Hogan, S. P., Brandt, E. B. & Rothenberg, M. E. Peyer's patch eosinophils: identification, characterization, and regulation by mucosal allergen exposure, interleukin-5, and eotaxin. Blood 96, 1538–1544 (2000).

    CAS  PubMed  Google Scholar 

  24. Mishra, A., Hogan, S. P., Lee, J. J., Foster, P. S. & Rothenberg, M. E. Fundamental signals regulate eosinophil homing to the gastrointestinal tract. J. Clin. Invest. 103, 1719–1727 (1999).

    Article  CAS  Google Scholar 

  25. Litwin, A., Flanagan, M. & Michael, J. G. Microencapsulation. The future of oral immunotherapy? Biodrugs 9, 261–270 (1998).

    Article  CAS  Google Scholar 

  26. Dvorak, A. M. et al. Ultrastructural identification of exocytosis of granules from human gut eosinophils in vivo. Int. Arch. Allergy Immunol. 102, 33–45 (1993).

    Article  CAS  Google Scholar 

  27. Lloyd, C. M. et al. CC chemokine receptor (CCR)3/eotaxin is followed by CCR4/monocyte-derived chemokine in mediating pulmonary T helper lymphocyte type 2 recruitment after serial antigen challenge in vivo. J. Exp. Med. 191, 265–274 (2000).

    Article  CAS  Google Scholar 

  28. Grimaldi, J. C. et al. Depletion of eosinophils in mice through the use of antibodies specific for C-C chemokine receptor 3 (CCR3). J. Leukoc. Biol. 65, 846–853 (1999).

    Article  CAS  Google Scholar 

  29. Collins, P. D., Marleau, S., Griffiths-Johnson, D. A., Jose, P. J. & Williams, T. J. Cooperation between interleukin-5 and the chemokine eotaxin to induce eosinophil accumulation in vivo. J. Exp. Med. 182, 1169–1174 (1995).

    Article  CAS  Google Scholar 

  30. Mestecky, J. et al. Selective induction of an immune response in human external secretions by ingestion of bacterial antigen. J. Clin. Invest. 61, 731–737 (1978).

    Article  CAS  Google Scholar 

  31. Michael, J. G. The role of digestive enzymes in orally induced immune tolerance. Immunol. Invest. 18, 1049–1054 (1989).

    Article  CAS  Google Scholar 

  32. Jaffe, J. S. et al. Evidence for an abnormal profile of interleukin-4 (IL-4), IL-5, and gamma-interferon (gamma-IFN) in peripheral blood T cells from patients with allergic eosinophilic gastroenteritis. J. Clin. Immunol. 14, 299–309 (1994).

    Article  CAS  Google Scholar 

  33. Gleich, G. J., Adolphson, C. R. & Leiferman, K. M. The biology of the eosinophilic leukocyte. Annu. Rev. Med. 44, 85–101 (1993).

    Article  CAS  Google Scholar 

  34. Abu-Ghazaleh, R. I., Fujisawa, T., Mestecky, J., Kyle, R. A. & Gleich, G. J. IgA-induced eosinophil degranulation. J. Immunol. 142, 2393–2400 (1989).

    CAS  PubMed  Google Scholar 

  35. Evans, C. M., Fryer, A. D., Jacoby, D. B., Gleich, G. J. & Costello, R. W. Pretreatment with antibody to eosinophil major basic protein prevents hyperresponsiveness by protecting neuronal M2 muscarinic receptors in antigen-challenged guinea pigs. J. Clin. Invest. 100, 2254–2262 (1997).

    Article  CAS  Google Scholar 

  36. Adamko, D. J., Yost, B. L., Gleich, G. J., Fryer, A. D. & Jacoby, D. B. Ovalbumin sensitization changes the inflammatory response to subsequent parainfluenza infection. Eosinophils mediate airway hyperresponsiveness, m(2) muscarinic receptor dysfunction, and antiviral effects. J. Exp. Med. 190, 1465–1478 (1999).

    Article  CAS  Google Scholar 

  37. Lin, S. et al. Expression of muscarinic receptor subtypes in rat gastric smooth muscle: effect of M3 selective antagonist on gastric motility and emptying. Dig. Dis. Sci. 42, 907–914 (1997).

    Article  CAS  Google Scholar 

  38. Talley, N. J., Kephart, G. M., McGovern, T. W., Carpenter, H. A. & Gleich, G. J. Deposition of eosinophil granule major basic protein in eosinophilic gastroenteritis and celiac disease. Gastroenterology 103, 137–145 (1992).

    Article  CAS  Google Scholar 

  39. Stelts, D. et al. Eosinophils retain their granule major basic protein in a murine model of allergic pulmonary inflammation. Am. J. Respir. Cell Mol. Biol. 18, 463–470 (1998).

    Article  CAS  Google Scholar 

  40. Erjefalt, J. S. & Persson, C. G. New aspects of degranulation and fates of airway mucosal eosinophils. Am. J. Respir. Crit. Care Med. 161, 2074–2085 (2000).

    Article  CAS  Google Scholar 

  41. Mishra, A., Hogan, S. P., Brandt, E. B. & Rothenberg, M. E. An etiological role for aeroallergens and eosinophils in experimental esophagitis. J. Clin. Invest. 107, 83–90 (2001).

    Article  CAS  Google Scholar 

  42. Lee, R. G. Marked eosinophilia in esophageal mucosal biopsies. Am. J. Surg. Pathol. 9, 475–479 (1985).

    Article  CAS  Google Scholar 

  43. Dobbins, J. W., Sheahan, D. G. & Behar, J. Eosinophilic gastroenteritis with esophageal involvement. Gastroenterology 72, 1312 (1977).

    CAS  PubMed  Google Scholar 

  44. Kelly, K. J. et al. Eosinophilic esophagitis attributed to gastroesophageal reflux: improvement with an amino acid-based formula. Gastroenterology 109, 1503–1512 (1995).

    Article  CAS  Google Scholar 

  45. Woerly, G. et al. Expression of CD28 and CD86 by human eosinophils and role in the secretion of type 1 cytokines (interleukin 2 and interferon gamma). Inhibition by immunoglobulin A complexes. J. Exp. Med. 190, 487–496 (1999).

    Article  CAS  Google Scholar 

  46. Shi, H. Z., Humbles, A., Gerard, C., Jin, Z. & Weller, P. F. Lymph node trafficking and antigen presentation by endobronchial eosinophils. J. Clin. Invest. 105, 945–953 (2000).

    Article  CAS  Google Scholar 

  47. Rothenberg, M. E., MacLean, J. A., Pearlman, E., Luster, A. D. & Leder, P. Targeted disruption of the chemokine eotaxin partially reduces antigen-induced tissue eosinophilia. J. Exp. Med. 185, 785–790 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Dvorak for review of the electron microscopy; M. Cohen, S. Wert, D. Witte, F. Finkelman and G. Khurana Hershey for discussions and review of the manuscript; A. Emley for graphic assistance; and I. Hofman for technical assistance with electron microscopy. Supported in part by the National Health Medical Research Council (Australia) C. J. Martin Postdoctoral Fellowship (to S. P. H.), National Institutes of Health grants R01 AI42242-02 (to M. E. R.), R01 AI45898-01 (to M. E. R.) and the Human Frontier Science Program (to M. E. R. and P. S. F.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc E. Rothenberg.

Supplementary information

Web Figure 1.

Experimental regime and oral antigen–induced TH2 immunity. (a) Mice were intraperitoneally (i.p.) injected with 50 μg OVA/1mg alum (OVA/Alum) on day 0. On days 12 and 15, mice were challenged orally with 20 mg placebo or OVA enteric-coated beads (placebo beads or OVA bead, respectively), or by intragastric administration (i.g.) of 200 μl PBS or soluble OVA (1 mg)–PBS. Four days after the last challenge, mice were killed and parameters were measured. (b) Eosinophil numbers in peripheral blood were determined by Discombe's analysis of femoral artery blood. (c) The serum allergen-specific IgG1and IgG2a ratio is shown for unchallenged and challenged mice. Amounts of allergen-specific IgA (c) and IgG1 (d) in fecal extracts of sensitized mice challenged with placebo or allergen beads are shown. (f-–g) Mesenteric lymph nodes from placebo- and oral allergen-–challenged mice were cultured for 72 h with anti-CD3 (5 μg/ml) and anti-CD28 (1 μg/ml) or OVA (50 μg/ml). Culture supernatants were collected and assessed for IL-5 (f), IL-4 (g) and IFN-γ (h) by ELISA. Data represent mean±s.e.m. for groups of 4-–5 per group. (GIF 67 kb)

Web Figure 2.

Anti-MBP immunostaining of the intestine in allergen-challenged mice. Allergen-sensitized mice were challenged with OVA enteric-coated beads. Four days later, the jejunum was analyzed. Anti-MBP staining shows intracellular granule and extracellular-associated immunoreactivity. (a,b) Two sections that highlight extracellular MBP localization are shown. (JPG 56 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hogan, S., Mishra, A., Brandt, E. et al. A pathological function for eotaxin and eosinophils in eosinophilic gastrointestinal inflammation. Nat Immunol 2, 353–360 (2001). https://doi.org/10.1038/86365

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/86365

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing