Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Extracellular matrix interacts with soluble CD95L: Retention and enhancement of cytotoxicity

Abstract

Fas ligand (CD95L) is synthesized both on the cell surface membrane and in a soluble form. Although CD95L contributes to immune privilege in the cornea and testis, the functions of these alternatively processed proteins are not well understood. Some reports suggest that the cytotoxicity of soluble CD95L is insignificant, whereas others show potent responses in vivo, including hepatocyte apoptosis that causes liver failure. We show here that extracellular matrix proteins interact with soluble CD95L and potentiate its pro-apoptotic activity. The cytotoxicity of supernatants from CD95L-expressing cells was increased by incubation on tissue culture plates coated with these matrix proteins; this effect was mediated by trimeric soluble CD95L. With the use of immunoprecipitation, it was found that CD95L binds directly to fibronectin. In addition, immunohistochemical analysis of the cornea revealed that soluble CD95L binds primarily to extracellular matrix. The retention of soluble CD95L on extracellular matrices is likely to play an important role in the development of peripheral tolerance in immune-privileged sites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The pro-apoptotic activity of soluble CD95L is enhanced by incubation with extracellular matrix proteins.
Figure 2: Size-exclusion column chromatography of soluble CD95L.
Figure 3: A distinct mutation affects soluble CD95L cytotoxicity on extracellular matrix.
Figure 4: Immunohistochemical localization of CD95L to the extracellular matrix in the anterior chamber of the eye.

Similar content being viewed by others

References

  1. Itoh, N. et al. The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell 66, 233–243 (1991).

    Article  CAS  Google Scholar 

  2. Suda, T., Takahashi, T., Golstein, P. & Nagata, S. Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell 75, 1169–1178 (1993).

    Article  CAS  Google Scholar 

  3. Brunner, T. et al. Cell-autonomous Fas (CD95)/Fas-ligand interaction mediates activation-induced apoptosis in T-cell hybridomas. Nature 373, 441–444 (1995).

    Article  CAS  Google Scholar 

  4. Dhein, J., Walczak, H., Baumler, C., Debatin, K.-M. & Krammer, P. H. Autocrine T-cell suicide mediated by APO-1/(Fas/CD95). Nature 373, 438–441 (1995).

    Article  CAS  Google Scholar 

  5. Nagata, S. & Golstein, P. The Fas death factor. Science 267, 1449–1456 (1995).

    Article  CAS  Google Scholar 

  6. Ju, S. et al. Fas(CD95)/FasL interactions required for programmed cell death after T-cell activation. Nature 373, 444–448 (1995).

    Article  CAS  Google Scholar 

  7. Arai, H., Chan, S. Y., Bishop, D. K. & Nabel, G. J. Inhibition of the alloantibody response by CD95 ligand. Nature Med. 3, 843–848 (1997).

    Article  CAS  Google Scholar 

  8. Griffith, T. S., Brunner, T., Fletcher, S. M., Green, D. R. & Ferguson, T. A. Fas ligand-induced apoptosis as a mechanism of immune privilege. Science 270, 1189–1192 (1995).

    Article  CAS  Google Scholar 

  9. Bellgrau, D. et al. A role for CD95 ligand in preventing graft rejection. Nature 377, 630–632 (1995).

    Article  CAS  Google Scholar 

  10. Strand, S. et al. Lymphocyte apoptosis induced by CD95/(APO-1/Fas) ligand-expressing tumor cells - a mechanism of immune evasion? Nature Med. 2, 1361–1366 (1996).

    Article  CAS  Google Scholar 

  11. Hahne, M. et al. Melanoma cell expression of Fas(Apo-1/CD95) ligand: implications for tumor immune escape. Science 274, 1363–1366 (1996).

    Article  CAS  Google Scholar 

  12. Lau, H. T., Yu, M., Fontana, A. & Stoeckert, C. J. Jr Prevention of islet allograft rejection with engineered myoblasts expressing FasL in mice. Science 273, 109–112 (1996).

    Article  CAS  Google Scholar 

  13. Tanaka, M., Suda, T., Takahashi, T. & Nagata, S. Expression of the functional soluble form of human Fas ligand in activated lymphocytes. EMBO J. 14, 1129–1135 (1995).

    Article  CAS  Google Scholar 

  14. Kayagaki, N. et al. Metalloproteinase-mediated release of human Fas ligand. J. Exp. Med. 182, 1777–1783 (1995).

    Article  CAS  Google Scholar 

  15. Tanaka, M., Itai, T., Adachi, M. & Nagata, S. Downregulation of Fas ligand by shedding. Nature Med. 4, 31–36 (1998).

    Article  CAS  Google Scholar 

  16. Schneider, P. et al. Conversion of membrane-bound Fas (CD95) ligand to its soluble form is associated with downregulation of its proapoptotic activity and loss of liver toxicity. J. Exp. Med. 187, 1205–1213 (1998).

    Article  CAS  Google Scholar 

  17. Tanaka, M. et al. Fas ligand in human serum. Nature Med. 2, 317–322 (1996).

    Article  CAS  Google Scholar 

  18. Rensing-Ehl, A. et al. Local Fas/APO-1 (CD95) ligand-mediated tumor cell killing in vivo. Eur. J. Immunol. 25, 2253–2258 (1995).

    Article  CAS  Google Scholar 

  19. Tanaka, M., Suda, T., Yatomi, T., Nakamura, N. & Nagata, S. Lethal effect of recombinant human Fas ligand in mice pretreated with propionibacterium acnes. J. Immunology 158, 2303–2309 (1997).

    CAS  Google Scholar 

  20. Peitsch, M. C. & Tschopp, J. Comparative molecular modelling of the Fas-ligand and other members of the TNF family. Mol. Immunol. 32, 761–772 (1995).

    Article  CAS  Google Scholar 

  21. Schneider, P. et al. Characterization of Fas (Apo-1, CD95)-Fas ligand interaction. J. Biol. Chem. 272, 18827–18833 (1997).

    Article  CAS  Google Scholar 

  22. Declerck, P. J. et al. Purification and characterization of a plasminogen activator inhibitor 1 binding protein from human plasma. J. Biol. Chem. 263, 15454–15461 (1988).

    CAS  PubMed  Google Scholar 

  23. Lawrence, D., Strandberg, L., Grundstrom, T. & Ny, T. Purification of active human plasminogen activator inhibitor 1 from E. coli. Eur. J. Biochem. 186, 523–533 (1989).

    Article  CAS  Google Scholar 

  24. Zheng, X., Saunders, T. L., Camper, S. A., Samuelson, L. C. & Ginsburg, D. Vitronectin is not essential for normal mammalian development and fertility. Proc. Natl Acad. Sci. USA 92, 12426–12430 (1995).

    Article  CAS  Google Scholar 

  25. Erickson, L. A. et al. Development of venous occlusions in mice transgenic for the plasminogen activator inhibitor-1 gene. Nature 346, 74–76 (1990).

    Article  CAS  Google Scholar 

  26. Carmeliet, P. et al. Plasminogen activator inhibitor-1 gene-deficient mice. J. Clin. Invest. 92, 2746–2755 (1993).

    Article  CAS  Google Scholar 

  27. Salonen, E. et al. Interaction of Plasminogen activator inhibitor (PAI-1) with vitronectin. J. Biol. Chem. 264, 6339–6343 (1989).

    CAS  PubMed  Google Scholar 

  28. Seiffert, D., Wagner, N. & Loskutoff, D. Serum-derived vitronectin influences the pericellular distribution of type 1 plasminogen activator inhibitor. J. Cell Biol. 111, 1283–1291 (1990).

    Article  CAS  Google Scholar 

  29. Chen, J.-J., Sun, Y. & Nabel, G. J. Regulation of the proinflammatory effects of Fas ligand (CD95L). Science 282, 1714–1717 (1998).

    Article  CAS  Google Scholar 

  30. Dick, A. D. et al. Fas-Fas Ligand-Mediated Apoptosis within Aqueous during Idiopathic Acute Anterior Uveitis. Invest. Ophthalmol. Vis. Sci. 40, 2258–2267 (1999).

    CAS  PubMed  Google Scholar 

  31. Sotozono, C. et al. Soluble Fas ligand expression in the ocular fluids of uveitis patients. Curr. Eye Res. 20, 54–57 (2000).

    Article  CAS  Google Scholar 

  32. Kayagaki, N. et al. Polymorphism of murine Fas ligand that affects the biological activity. Proc. Natl Acad. Sci. USA 94, 5986–5990 (1997).

    Article  Google Scholar 

Download references

Acknowledgements

We thank D. Gschwend, C. Davis, N. Barrett and J. Stein for manuscript preparation; L. L. Xu for the preparation of the slides for histological analysis; and members of the Nabel laboratory for their helpful advice and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary J. Nabel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aoki, K., Kurooka, M., Chen, JJ. et al. Extracellular matrix interacts with soluble CD95L: Retention and enhancement of cytotoxicity. Nat Immunol 2, 333–337 (2001). https://doi.org/10.1038/86336

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/86336

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing