Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A fresh look at tumor immunosurveillance and immunotherapy

Abstract

Despite major advances in our understanding of adaptive immunity and dendritic cells, consistent and durable responses to cancer vaccines remain elusive and active immunotherapy is still not an established treatment modality. The key to developing an effective anti-tumor response is understanding why, initially, the immune system is unable to detect transformed cells and is subsequently tolerant of tumor growth and metastasis. Ineffective antigen presentation limits the adaptive immune response; however, we are now learning that the host's innate immune system may first fail to recognize the tumor as posing a danger. Recent descriptions of stress-induced ligands on tumor cells recognized by innate effector cells, new subsets of T cells that regulate tumor tolerance and the development of spontaneous tumors in mice that lack immune effector molecules, beckon a reflection on our current perspectives on the interaction of transformed cells with the immune system and offer new hope of stimulating therapeutic immunity to cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The adaptive immune response to tumor-derived TAAs such as MAGE1 and MART1 in melanoma.
Figure 2: Recognition of transformed cells by the innate immune system.
Figure 3: Mechanisms for tumor tolerance.

Similar content being viewed by others

References

  1. Coley, W. B. The treatment of malignant tumors by repeated inoculations of erysipelas: with a report of ten original cases. Am. J. Med. Sci. 105, 487–511 (1893).

    Article  Google Scholar 

  2. Burnet, F. M. Cancer: a biological approach. Br. Med. J. 1, 779–786 (1957).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Burnet, F. M. Immunological aspects of malignant disease. Lancet 1, 1171–1174 (1967).

    Article  CAS  PubMed  Google Scholar 

  4. Ada, G. The coming of age of tumour immunotherapy. Immunol. Cell Biol. 77, 180–185 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Stutman, O. Immunodepression and malignancy. Adv. Cancer Res. 22, 261–422 (1975).

    Article  CAS  PubMed  Google Scholar 

  6. Medzhitov, R. & Janeway, C. Jr Innate immune recognition: mechanisms and pathways. Immunol. Rev. 173, 89–97 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Fuchs, E. J. & Matzinger, P. Is cancer dangerous to the immune system? Semin. Immunol. 8, 271–280 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Gallucci, S., Lolkema, M. & Matzinger, P. Natural adjuvants: endogenous activators of dendritic cells. Nature Med. 5, 1249–1255 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Gallucci, S. & Matzinger, P. Danger signals: SOS to the immune system. Curr. Opin. Immunol. 13, 114–119 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Matzinger, P. Tolerance, danger, and the extended family. Annu. Rev. Immunol. 12, 991–1045 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Bennett, S. R. et al. Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature 393, 478–480 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Ridge, J. P., Fuchs, E. J. & Matzinger, P. Neonatal tolerance revisited: turning on newborn T cells with dendritic cells. Science 271, 1723–1726 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Schoenberger, S. P., Toes, R. E., van der Voort, E. I., Offringa, R. & Melief, C. J. T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature 393, 480–483 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Rosenberg, S. A. et al. Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nature Med. 4, 321–327 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Marchand, M. et al. Tumor regression responses in melanoma patients treated with a peptide encoded by gene MAGE-3. Int. J. Cancer 63, 883–885 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Jager, E., Jager, D. & Knuth, A. CTL-defined cancer vaccines: perspectives for active immunotherapeutic interventions in minimal residual disease. Cancer Metastasis Rev. 18, 143–150 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Van den Eynde, B. J. & van der Bruggen, P. T cell defined tumor antigens. Curr. Opin. Immunol. 9, 684–693 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Wang, R. F. & Rosenberg, S. A. Human tumor antigens for cancer vaccine development. Immunol. Rev. 170, 85–100 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Houghton, A. N. Cancer antigens: immune recognition of self and altered self. J. Exp. Med. 180, 1–4. (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Wolfel, T. et al. A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science 269, 1281–1284 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Rickinson, A. B. & Moss, D. J. Human cytotoxic T lymphocyte responses to Epstein-Barr virus infection. Annu. Rev. Immunol. 15, 405–431 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Pfreundschuh, M. Exploitation of the B cell repertoire for the identification of human tumor antigens. Cancer Chemother. Pharmacol. 46, 3–7 (2000).

    Article  Google Scholar 

  23. Robert, J. & Cohen, N. Evolution of immune surveillance and tumor immunity: studies in Xenopus. Immunol. Rev. 166, 231–243 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Groh, V. et al. Cell stress-regulated human major histocompatibility complex class I gene expressed in gastrointestinal epithelium. Proc. Natl Acad. Sci. USA 93, 12445–12450 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Groh, V., Steinle, A., Bauer, S. & Spies, T. Recognition of stress-induced MHC molecules by intestinal epithelial γδ T cells. Science 279, 1737–1740 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Diefenbach, A., Jamieson, A. M., Liu, S. D., Shastri N. & Raulet, D. H. Ligands for the murine NKG2D receptor: expression by tumor cells and activation of NK cells and macrophages. Nature Immunol. 1, 119–126 (2000).

    Article  CAS  Google Scholar 

  27. Cerwenka, A. et al. Retinoic acid early inducible genes define a ligand family for the activating NKG2D receptor in mice. Immunity 12, 721–727 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Bauer, S. et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285, 727–729 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Whiteside, T. L. & Herberman, R. B. The role of natural killer cells in immune surveillance of cancer. Curr. Opin. Immunol. 7, 704–710 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Godfrey, D. I., Hammond, K. J., Poulton, L. D., Smyth, M. J. & Baxter, A. G. NKT cells: facts, functions and fallacies. Immunol. Today 21, 573–583 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Smyth, M. J. & Godfrey, D. I. NKT cells and tumor immunity: a double edged sword. Nature Immunol. 1, 459–460 (2000).

    Article  CAS  Google Scholar 

  32. Lanier, L. L. NK cell receptors. Annu. Rev. Immunol. 16, 359–393 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Salcedo, M. Inhibitory role of murine Ly49 lectin-like receptors on natural killer cells. Curr. Top. Microbiol. Immunol. 244, 97–105 (1999).

    CAS  PubMed  Google Scholar 

  34. Takei, F., Brennan, J. & Mager, D. L. The Ly 49 family: genes, proteins and recognition of class I MHC. Immunol. Rev. 155, 67–77 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Lopez-Botet, M., Llano, M., Navarro, F. & Bellon, T. NK cell recognition of non-classical HLA class I molecules. Semin. Immunol. 12, 109–119 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Braud, V. M. & McMichael, A. J. Regulation of NK cell functions through interaction of the CD94/NKG2 receptors with the nonclassical class I molecule HLA-E. Curr. Top. Microbiol. Immunol. 244, 85–95 (1999).

    CAS  PubMed  Google Scholar 

  37. Park, S. H. & Bendelac, A. CD1-restricted T-cell responses and microbial infection. Nature 406, 788–792 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Moretta, A., Biassoni, R., Bottino, C., Mingari, M. C. & Moretta, L. Natural cytotoxicity receptors that trigger human NK-cell-mediated cytolysis. Immunol. Today 21, 228–234 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Wu, J. et al. An activating immunoreceptor complex formed by NKG2D and DAP10. Science 285, 730–732 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Cosman, D. et al. ULBPs, novel MHC class I–related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. Immunity 14, 123–133 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Groh, V. et al. Broad tumor-associated expression and recognition by tumor-derived γ δ T cells of MICA and MICB. Proc. Natl Acad. Sci. USA 96, 6879–6884 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nomura, M. et al. Genomic structures and characterization of Rae1 family members encoding GPI-anchored cell surface proteins and expressed predominantly in embryonic mouse brain. J. Biochem. (Tokyo) 120, 987–995 (1996).

    Article  CAS  Google Scholar 

  43. Gatti, R. A. & Good, R. A. Occurrence of malignancy in immunodeficiency diseases. A literature review. Cancer 28, 89–98 (1971).

    Article  CAS  PubMed  Google Scholar 

  44. McClain, K. L. Immunodeficiency states and related malignancies. Cancer Treat. Res. 92, 39–61 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Cannon, M. & Cesarman, E. Kaposi's sarcoma-associated herpes virus and acquired immunodeficiency syndrome-related malignancy. Semin. Oncol. 27, 409–419 (2000).

    CAS  PubMed  Google Scholar 

  46. Paller, A. S. Immunodeficiency syndromes. X-linked aγglobulinemia, common variable immunodeficiency, Chediak-Higashi syndrome, Wiskott-Aldrich syndrome, and X-linked lymphoproliferative disorder. Dermatol. Clin. 13, 65–71 (1995).

    Article  CAS  PubMed  Google Scholar 

  47. Otley, C. C. & Pittelkow, M. R. Skin cancer in Liver Transpl.ant recipients. Liver Transpl. 6, 253–262 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Aguilar, L. K., Rooney, C. M. & Heslop, H. E. Lymphoproliferative disorders involving Epstein-Barr virus after hemopoietic stem cell transplantation. Curr. Opin. Oncol. 11, 96–101 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Haliotis, T., Ball, J. K., Dexter, D. & Roder, J. C. Spontaneous and induced primary oncogenesis in natural killer (NK)-cell-deficient beige mutant mice. Int. J. Cancer 35, 505–513 (1985).

    Article  CAS  PubMed  Google Scholar 

  50. Gershwin, M. E., Ohsugi, Y., Castles, J. J., Ikeda, R. M. & Ruebner, B. Anti-mu induces lymphoma in germfree congenitally athymic (nude) but not in heterozygous (nu/+) mice. J. Immunol. 131, 2069–2073 (1983).

    CAS  PubMed  Google Scholar 

  51. Shultz, L. D. et al. Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J. Immunol. 154, 180–191 (1995).

    CAS  PubMed  Google Scholar 

  52. Dighe, A. S., Richards, E., Old, L. J. & Schreiber, R. D. Enhanced in vivo growth and resistance to rejection of tumor cells expressing dominant negative IFN γ receptors. Immunity 1, 447–456. (1994).

    Article  CAS  PubMed  Google Scholar 

  53. Kaplan, D. H. et al. Demonstration of an interferon γ-dependent tumor surveillance system in immunocompetent mice. Proc. Natl Acad. Sci. USA 95, 7556–7561 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Van den Broek, M. F. et al. Decreased tumor surveillance in perforin-deficient mice. J. Exp. Med. 184, 1781–1790 (1996).

    Article  CAS  PubMed  Google Scholar 

  55. Street, S. E., Cretney, E. & Smyth, M. J. Perforin and interferon-γ activities independently control tumor initiation, growth, and metastasis. Blood 97, 192–197 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Smyth, M. J., Crowe, N. Y., & Godfrey, D. I. NK cells and NKT cells collaborate in host protection from MCA-induced fibrosarcoma. Int. Immunol. 13 (in the press, 2001).

  57. Smyth, M. J. et al. Perforin-mediated cytotoxicity is critical for surveillance of spontaneous lymphoma. J. Exp. Med. 192, 755–760 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Smyth, M. J. et al. Differential tumor surveillance by natural killer (NK) and NKT cells. J. Exp. Med. 191, 661–668 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Shustov, A. et al. Role of perforin in controlling B-cell hyperactivity and humoral autoimmunity. J. Clin. Invest. 106, R39–47 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Matloubian, M. et al. A role for perforin in downregulating T-cell responses during chronic viral infection. J. Virol. 73, 2527–2536 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Badovinac, V. P., Tvinnereim, A. R. & Harty, J. T. Regulation of antigen-specific CD8(+) T cell homeostasis by perforin and interferon-γ. Science 290, 1354–1358 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Davidson, W. F., Giese, T. & Fredrickson, T. N. Spontaneous development of plasmacytoid tumors in mice with defective fas-fas ligand interactions. J. Exp. Med. 187, 1825–1838 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Shaukaran, V. et al. IFN-γ and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature (2001).

  64. Strander, H. & Einhorn, S. Interferons and the tumor cell. Biotherapy 8, 213–218 (1996).

    Article  CAS  PubMed  Google Scholar 

  65. Rossi, D. & Zlotnik, A. The biology of chemokines and their receptors. Annu. Rev. Immunol. 18, 217–242 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Ferrone, S. & Marincola, F. M. Loss of HLA class I antigens by melanoma cells: molecular mechanisms, functional significance and clinical relevance. Immunol. Today 16, 487–494 (1995).

    Article  CAS  PubMed  Google Scholar 

  67. Elgert, K. D., Alleva, D. G. & Mullins, D. W. Tumor-induced immune dysfunction: the macrophage connection. J. Leukoc. Biol. 64, 275–290 (1998).

    Article  CAS  PubMed  Google Scholar 

  68. Walker, P. R., Saas, P. & Dietrich, P. Y. Tumor expression of Fas ligand (CD95L) and the consequences. Curr. Opin. Immunol. 10, 564–572 (1998).

    Article  CAS  PubMed  Google Scholar 

  69. Harding, C., Heuser, J. & Stahl, P. Endocytosis and intracellular processing of transferrin and colloidal gold-transferrin in rat reticulocytes: demonstration of a pathway for receptor shedding. Eur. J. Cell Biol. 35, 256–263 (1984).

    CAS  PubMed  Google Scholar 

  70. Kurts, C. et al. Constitutive class I-restricted exogenous presentation of self antigens in vivo. J. Exp. Med. 184, 923–930 (1996).

    Article  CAS  PubMed  Google Scholar 

  71. Davis, I. D. An overview of cancer immunotherapy. Immunol. Cell Biol. 78, 179–195 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Tamura, Y., Peng, P., Liu, K., Daou, M. & Srivastava, P. K. Immunotherapy of tumors with autologous tumor-derived heat shock protein preparations. Science 278, 117–120 (1997).

    Article  CAS  PubMed  Google Scholar 

  73. Melcher, A. et al. Tumor immunogenicity is determined by the mechanism of cell death via induction of heat shock protein expression. Nature Med. 4, 581–587 (1998).

    Article  CAS  PubMed  Google Scholar 

  74. Chiodoni, C. et al. Dendritic cells infiltrating tumors cotransduced with granulocyte/macrophage colony-stimulating factor (GM-CSF) and CD40 ligand genes take up and present endogenous tumor-associated antigens, and prime naive mice for a cytotoxic T lymphocyte response. J. Exp. Med. 190, 125–133 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Albert, M. L., Sauter, B. & Bhardwaj, N. Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 392, 86–89 (1998).

    Article  CAS  PubMed  Google Scholar 

  76. Greten, T. F. & Jaffee, E. M. Cancer vaccines. J. Clin. Oncol. 17, 1047–1060 (1999).

    Article  CAS  PubMed  Google Scholar 

  77. Blachere, N. E. et al. Heat shock protein-peptide complexes, reconstituted in vitro, elicit peptide-specific cytotoxic T lymphocyte response and tumor immunity. J. Exp. Med. 186, 1315–1322 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sakaguchi, S. Animal models of autoimmunity and their relevance to human diseases. Curr. Opin. Immunol. 12, 684–690. (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Sakaguchi, S. Regulatory T cells: key controllers of immunologic self-tolerance. Cell 101, 455–458 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Hanninen, A. & Harrison, L. C. γδ T cells as mediators of mucosal tolerance: the autoimmune diabetes model. Immunol. Rev. 173, 109–119 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Hammond, K. J. L. et al. α/β-T cell receptor (TCR)+CD4CD8 (NKT) thymocytes prevent insulin-dependent diabetes mellitus in nonobese diabetic (NOD)/Lt mice by the influence of interleukin (IL)-4 and/or IL-10. J. Exp. Med. 187, 1047–1056 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Terabe, M. et al. NKT cell-mediated repression of tumor immunosurveillance by IL-13 and the IL-4R-STAT6 pathway. Nature Immunol. 1, 515–520 (2000).

    Article  CAS  Google Scholar 

  83. Shimizu, J., Yamazaki, S. & Sakaguchi, S. Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity. J. Immunol. 163, 5211–5218 (1999).

    CAS  PubMed  Google Scholar 

  84. Onizuka, S. et al. Tumor rejection by in vivo administration of anti-CD25 (interleukin-2 receptor α) monoclonal antibody. Cancer Res. 59, 3128–3133 (1999).

    CAS  PubMed  Google Scholar 

  85. Seo, N., Tokura, Y., Takigawa, M. & Egawa, K. Depletion of IL-10- and TGF-β-producing regulatory γδ T cells by administering a daunomycin-conjugated specific monoclonal antibody in early tumor lesions augments the activity of CTLs and NK cells. J. Immunol. 163, 242–249 (1999).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by grants from the National Health and Medical Research Council of Australia and the Anti-Cancer Council of Victoria. D. I. G. is a recipient of an ADCORP-Diabetes Australia Research Fellowship and donations from Rothschild Australia. Special thanks to L. Lanier for his critique of this review.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mark J. Smyth, Dale I. Godfrey or Joseph A. Trapani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smyth, M., Godfrey, D. & Trapani, J. A fresh look at tumor immunosurveillance and immunotherapy. Nat Immunol 2, 293–299 (2001). https://doi.org/10.1038/86297

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/86297

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing