Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The nature of molecular recognition by T cells

Abstract

Considerable progress has been made in characterizing four key sets of interactions controlling antigen responsiveness in T cells, involving the following: the T cell antigen receptor, its coreceptors CD4 and CD8, the costimulatory receptors CD28 and CTLA-4, and the accessory molecule CD2. Complementary work has defined the general biophysical properties of interactions between cell surface molecules. Among the major conclusions are that these interactions are structurally heterogeneous, often reflecting clear-cut functional constraints, and that, although they all interact relatively weakly, hierarchical differences in the stabilities of the signaling complexes formed by these molecules may influence the sequence of steps leading to T cell activation. Here we review these developments and highlight the major challenges remaining as the field moves toward formulating quantitative models of T cell recognition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The wide variation in the 2D and 3D affinities of leukocyte cell-cell recognition molecules.
Figure 2: Structural rearrangements accompany TCR-peptide-MHC interactions.
Figure 3: Coreceptor interactions and structure: implications of hierarchical affinity differences.
Figure 4: Contrasting modes of low-affinity recognition at the leukocyte surface.
Figure 5: Diverse stabilities and organization of signaling structures formed by costimulatory molecules.
Figure 6: Electrostatic contacts determine the specificity of CD2 binding to CD58.

Similar content being viewed by others

References

  1. Williams A.F., Galfre, G. & Milstein, C. Analysis of cell surfaces by xenogeneic myeloma-hybrid antibodies: differentiation antigens of rat lymphocytes. Cell 12, 663–673 (1977).

    CAS  PubMed  Google Scholar 

  2. Williams, A.F. The immunoglobulin superfamily takes shape. Nature 308, 12–13 (1984).

    CAS  PubMed  Google Scholar 

  3. Seed, B. & Aruffo, A. Molecular cloning of the CD2 antigen, the T-cell erythrocyte receptor, by a rapid immunoselection procedure. Proc. Natl. Acad. Sci. USA 84, 3365–3369 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Barclay, A.N. et al. The Leukocyte Antigen Factsbook (Academic Press, London, 1997).

    Google Scholar 

  5. Driscoll, P.C., Cyster, J.G., Campbell, I.D. & Williams, A.F. Structure of domain 1 of rat T lymphocyte CD2 antigen. Nature 353, 762–765 (1991).

    CAS  PubMed  Google Scholar 

  6. Jones, E.Y. et al. Crystal structure at 2.8 Å resolution of a soluble form of the cell adhesion molecule CD2. Nature 360, 232–239 (1992).

    CAS  PubMed  Google Scholar 

  7. van der Merwe, P.A., Brown, M.H., Davis, S.J. & Barclay, A.N. Affinity and kinetic analysis of the interaction of the cell-adhesion molecules rat CD2 and CD48. EMBO J. 12, 4945–4954 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Davis, S.J., Ikemizu, S., Wild, M.K. & van der Merwe, P.A. CD2 and the nature of protein interactions mediating cell-cell recognition. Immunol. Rev. 163, 217–236 (1998).

    CAS  PubMed  Google Scholar 

  9. van der Merwe, P.A. & Davis, S.J. Molecular interactions mediating T cell antigen recognition. Annu. Rev. Immunol. (in the press).

  10. Dustin, M.L. et al. Visualization of the CD2 interaction with LFA-3 and determination of the two-dimensional dissociation constant for adhesion receptors in a contact area. J. Cell Biol. 132, 465–474 (1996).

    CAS  PubMed  Google Scholar 

  11. Dustin, M.L. et al. Low affinity interaction of human or rat T cell adhesion molecule CD2 with its ligand aligns adhering membranes to achieve high physiological affinity. J. Biol. Chem. 272, 30889–30898 (1997).

    CAS  PubMed  Google Scholar 

  12. Bromley, S.K. et al. The immunological synapse and CD28-CD80 interactions. Nat. Immunol. 2, 1159–1166 (2001).

    CAS  PubMed  Google Scholar 

  13. Davis, S.J. & van der Merwe, P.A. The structure and ligand interactions of CD2: implications for T-cell function. Immunol. Today 17, 177–187 (1996).

    CAS  PubMed  Google Scholar 

  14. van der Merwe, P.A., Davis, S.J., Shaw, A.S. & Dustin, M.L. Cytoskeletal polarization and redistribution of cell surface molecules during T cell antigen recognition. Semin. Immunol. 12, 5–21 (2000).

    CAS  Google Scholar 

  15. Wild, M.K. et al. Dependence of T cell antigen recognition on the dimensions of an accessory receptor-ligand complex. J. Exp. Med. 190, 31–41 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Shaw, A.S. & Dustin, M.L. Making the T cell receptor go the distance: a topological view of T cell activation. Immunity 6, 361–369 (1997).

    CAS  PubMed  Google Scholar 

  17. Leckband, D. Measuring the forces that control protein interactions. Annu. Rev. Biophys. Biomol. Struct. 29, 1–26 (2000).

    CAS  PubMed  Google Scholar 

  18. Zhu, B. et al. Direct measurements of heterotypic adhesion between the cell surface proteins CD2 and CD48. Biochemistry 41, 12163–12170 (2002).

    CAS  PubMed  Google Scholar 

  19. Schwesinger, F. et al. Unbinding forces of single antibody-antigen complexes correlate with their thermal dissociation rates. Proc. Natl. Acad. Sci. USA 97, 9972–9977 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Dustin, M.L. & Springer, T.A. T-cell receptor cross-linking transiently stimulates adhesiveness through LFA-1. Nature 341, 619–624 (1989).

    CAS  PubMed  Google Scholar 

  21. Hahn, W.C. et al. A distinct cytoplasmic domain of CD2 regulates ligand avidity and T-cell responsiveness to antigen. Proc. Natl. Acad. Sci. USA 89, 7179–7183 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Moody, A.M. et al. Developmentally regulated glycosylation of the CD8αβ coreceptor stalk modulates ligand binding. Cell 107, 501–512 (2001).

    CAS  PubMed  Google Scholar 

  23. Fahmy, T.M., Bieler, J.G., Edidin, M. & Schneck, J.P. Increased TCR avidity after T cell activation: a mechanism for sensing low-density antigen. Immunity 14, 135–143 (2001).

    CAS  PubMed  Google Scholar 

  24. Hynes, R. Integrins: bidirectional, allosteric signaling machines. Cell 110, 673–687 (2002).

    CAS  PubMed  Google Scholar 

  25. Xiong, J.P. et al. Crystal structure of the extracellular segment of integrin αVβ3. Science 294, 339–345 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Rudd, P.M. et al. Glycosylation and the immune system. Science 291, 2370–2376 (2001).

    CAS  PubMed  Google Scholar 

  27. Wang, J. & Springer, T.A. Structural specializations of immunoglobulin superfamily members for adhesion to integrins and viruses. Immunol. Rev. 163, 197–215 (1998).

    CAS  PubMed  Google Scholar 

  28. Daniels, M.A., Hogquist, K.A. & Jameson, S.C. Sweet 'n' sour: the impact of differential glycosylation on T cell responses. Nat. Immunol. 3, 903–910 (2002).

    CAS  PubMed  Google Scholar 

  29. Xu, Z. & Weiss, A. Negative regulation of CD45 by differential homodimerization of the alternatively spliced isoforms. Nat. Immunol. 3, 764–771 (2002).

    CAS  PubMed  Google Scholar 

  30. Daniels, M.A. et al. CD8 binding to MHC class I molecules is influenced by T cell maturation and glycosylation. Immunity 15, 1051–1061 (2001).

    CAS  PubMed  Google Scholar 

  31. Rudolph, M.G., Luz, J.G. & Wilson, I.A. Structural and thermodynamic correlates of T cell signaling. Annu. Rev. Biophys. Biomol. Struct. 31, 121–149 (2002).

    CAS  PubMed  Google Scholar 

  32. Hennecke, J. & Wiley, D.C. T cell receptor-MHC interactions up close. Cell 104, 1–4 (2001).

    CAS  PubMed  Google Scholar 

  33. Willcox, B.E. et al. TCR binding to peptide-MHC stabilises a flexible recognition interface. Immunity 10, 357–365 (1999).

    CAS  PubMed  Google Scholar 

  34. Boniface, J.J., Reich, Z., Lyons, D.S. & Davis, M.M. Thermodynamics of T cell receptor binding to peptide-MHC: evidence for a general mechanism of molecular scanning. Proc. Natl. Acad. Sci. USA 96, 11446–11451 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Hare, B.J. et al. Structure, specificity and CDR mobility of a class II restricted single- chain T-cell receptor. Nat. Struct. Biol. 6, 574–581 (1999).

    CAS  PubMed  Google Scholar 

  36. Garcia, K.C. et al. Structural basis of plasticity in T cell receptor recognition of a self peptide-MHC antigen. Science 279, 1166–1172 (1998).

    CAS  PubMed  Google Scholar 

  37. Reiser, J.B. et al. A T cell receptor CDR3β loop undergoes conformational changes of unprecedented magnitude upon binding to a peptide/MHC class I complex. Immunity 16, 345–354 (2002).

    CAS  PubMed  Google Scholar 

  38. Ding, Y.-H. et al. Four A6-TCR/peptide/HLA-A2 structures that generate very different T cell signals are nearly identical. Immunity 11, 45–56 (1999).

    CAS  PubMed  Google Scholar 

  39. Wu, L.C., Tuot, D.S., Lyons, D.S., Garcia, K.C. & Davis, M.M. Two-step binding mechanism for T-cell receptor recognition of peptide MHC. Nature 418, 552–556 (2002).

    CAS  PubMed  Google Scholar 

  40. Mason, D. A very high level of crossreactivity is an essential feature of the T-cell receptor. Immunol. Today 19, 395–404 (1998).

    CAS  PubMed  Google Scholar 

  41. Davis, M.M. et al. Ligand recognition by α β T cell receptors. Annu. Rev. Immunol. 16, 523–544 (1998).

    CAS  PubMed  Google Scholar 

  42. al-Ramadi, B.K. et al. Lack of strict correlation of functional sensitization with the apparent affinity of MHC/peptide complexes for the TCR. J. Immunol. 155, 662–673 (1995).

    CAS  PubMed  Google Scholar 

  43. van der Merwe, P.A. Leukocyte adhesion: high-speed cells with ABS. Curr. Biol. 9, R419–422 (1999).

    CAS  PubMed  Google Scholar 

  44. Dustin, M.L. et al. TCR-mediated adhesion of T cell hybridomas to planar bilayers containing purified MHC class II/peptide complexes and receptor shedding during detachment. J. Immunol. 157, 2014–2021 (1996).

    CAS  PubMed  Google Scholar 

  45. Huang, J.-F. et al. TCR-mediated internalization of peptide-MHC complexes acquired by T cells. Science 286, 952–954 (1999).

    CAS  PubMed  Google Scholar 

  46. Davis, S.J. et al. High level expression in Chinese hamster ovary cells of soluble forms of CD4 T lymphocyte glycoprotein including glycosylation variants. J. Biol. Chem. 265, 10410–10418 (1990).

    CAS  PubMed  Google Scholar 

  47. Wu, H., Kwong, P.D. & Hendrickson, W.A. Dimeric association and segmental variability in the structure of human CD4. Nature 387, 527–530 (1997).

    CAS  PubMed  Google Scholar 

  48. Leishman, A.J. et al. T cell responses modulated through interaction between CD8αα and the nonclassical MHC class I molecule, TL. Science 294, 1936–1939 (2001).

    CAS  PubMed  Google Scholar 

  49. Gao, G.F. et al. Crystal structure of the complex between human CD8αα and HLA-A2. Nature 387, 630–634 (1997).

    CAS  PubMed  Google Scholar 

  50. Kern, P.S. et al. Structural basis of CD8 coreceptor function revealed by crystallographic analysis of a murine CD8αα ectodomain fragment in complex with H-2Kb. Immunity 9, 519–530 (1998).

    CAS  PubMed  Google Scholar 

  51. Wang, J.H. et al. Crystal structure of the human CD4 N-terminal two-domain fragment complexed to a class II MHC molecule. Proc. Natl. Acad. Sci. USA 98, 10799–10804 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Wyer, J.R. et al. T cell receptor and co-receptor CD8αα bind peptide-MHC independently and with distinct kinetics. Immunity 10, 219–225 (1999).

    CAS  PubMed  Google Scholar 

  53. Kern, P. et al. Expression, purification, and functional analysis of murine ectodomain fragments of CD8αα and CD8αβ dimers. J. Biol. Chem. 274, 27237–27243 (1999).

    CAS  PubMed  Google Scholar 

  54. Xiong, Y., Kern, P., Chang, H. & Reinherz, E. T Cell receptor binding to a pMHCII ligand is kinetically distinct from and independent of CD4. J. Biol. Chem. 276, 5659–5667 (2001).

    CAS  PubMed  Google Scholar 

  55. Doyle, C. & Strominger, J.L. Interaction between CD4 and class II MHC molecules mediates cell adhesion. Nature 330, 256–259 (1987).

    CAS  PubMed  Google Scholar 

  56. Norment, A.M. et al. Cell-cell adhesion mediated by CD8 and MHC class I molecules. Nature 336, 79–81 (1988).

    CAS  PubMed  Google Scholar 

  57. Janeway, C.A. The T cell receptor as a signalling machine: CD4/CD8 coreceptors and CD45 in T cell activation. Annu. Rev. Immunol. 10, 645–674 (1992).

    CAS  PubMed  Google Scholar 

  58. Thome, M., Duplay, P., Guttinger, M. & Acuto, O. Syk and ZAP-70 mediate recruitment of p56lck/CD4 to the activated T cell receptor/CD3/ζ complex. J. Exp. Med. 181, 1997–2006 (1995).

    CAS  PubMed  Google Scholar 

  59. Irvine, D.J., Purbhoo, M.A., Krogsgaard, M. & Davis, M.M. Direct observation of single ligand recognition by T cells. Nature 419, 845–849 (2002).

    CAS  PubMed  Google Scholar 

  60. Schwartz, J.C. et al. Structural basis for co-stimulation by the human CTLA-4/B7-2 complex. Nature 410, 604–608 (2001).

    CAS  PubMed  Google Scholar 

  61. Stamper, C.C. et al. Crystal structure of the B7-1/CTLA-4 complex that inhibits human immune responses. Nature 410, 608–611 (2001).

    CAS  PubMed  Google Scholar 

  62. Collins, A.V. et al. The interaction properties of costimulatory molecules revisited. Immunity 17, 201–210 (2002).

    CAS  PubMed  Google Scholar 

  63. Ikemizu, S. et al. Structure and dimerization of a soluble form of B7-1. Immunity 12, 51–60 (2000).

    CAS  PubMed  Google Scholar 

  64. Schwartz, J.C., Zhang, X., Nathenson, S.G. & Almo SC . Structural mechanisms of costimulation. Nat. Immunol. 3, 427–434 (2002).

    CAS  PubMed  Google Scholar 

  65. Diehn, M. et al. Genomic expression programs and the integration of the CD28 costimulatory signal in T cell activation. Proc. Natl. Acad. Sci. USA 99, 11796–11801 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Tacke, M., Hanke, G., Hanke, T. & Hunig, T. CD28-mediated induction of proliferation in resting T cells in vitro and in vivo without engagement of the T cell receptor: evidence for functionally distinct forms of CD28. Eur. J. Immunol. 27, 239–247 (1997).

    CAS  PubMed  Google Scholar 

  67. Wulfing, C. & Davis, M.M. A receptor/cytoskeletal movement triggered by costimulation during T cell activation. Science 282, 2266–2269 (1998).

    CAS  PubMed  Google Scholar 

  68. Viola, A., Schroeder, S., Sakakibara, Y. & Lanzavecchia, A. T lymphocyte costimulation mediated by reorganization of membrane microdomains. Science 283, 680–682 (1999).

    CAS  PubMed  Google Scholar 

  69. van der Merwe, P.A. & Davis, S.J. Immunology. The immunological synapse—a multitasking system. Science 295, 1479–1480 (2002).

    CAS  PubMed  Google Scholar 

  70. van der Merwe, P.A. & Barclay, A.N. Transient intercellular adhesion: the importance of weak protein- protein interactions. Trends Biochem. Sci. 19, 354–358 (1994).

    CAS  PubMed  Google Scholar 

  71. van der Merwe, P.A. et al. The human cell-adhesion molecule CD2 binds CD58 with a very low affinity and an extremely fast dissociation rate but does not bind CD48 or CD59. Biochemistry 33, 10149–10160 (1994).

    CAS  PubMed  Google Scholar 

  72. Wang, J.H. et al. Structure of a heterophilic adhesion complex between the human CD2 and CD58 (LFA-3) counterreceptors. Cell 97, 791–803 (1999).

    CAS  PubMed  Google Scholar 

  73. Kim, M. et al. Molecular dissection of the CD2-CD58 counter-receptor interface identifies CD2 Tyr86 and CD58 Lys34 residues as the functional “hot spot”. J. Mol. Biol. 312, 711–720 (2001).

    CAS  PubMed  Google Scholar 

  74. Davis, S.J. et al. The role of charged residues mediating low affinity protein-protein recognition at the cell surface by CD2. Proc. Natl. Acad. Sci. USA 95, 5490–5494 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Ikemizu, S. et al. Crystal structure of the CD2-binding domain of CD58 (lymphocyte function-associated antigen 3) at 1.8-Å resolution. Proc. Natl. Acad. Sci. USA 96, 4289–4294 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. van der Merwe, P.A. et al. Topology of the CD2-CD48 cell-adhesion molecule complex: implications for antigen recognition by T cells. Curr. Biol. 5, 74–84 (1995).

    CAS  PubMed  Google Scholar 

  77. Bachmann, M.F., Barner, M. & Kopf, M. CD2 sets quantitative thresholds in T cell activation. J. Exp. Med. 190, 1383–1392 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Sivasankar, S., Brieher, W., Lavrik, N., Gumbiner, B. & Leckband, D. Direct molecular force measurements of multiple adhesive interactions between cadherin ectodomains. Proc. Natl. Acad. Sci. USA 96, 11820–11824 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Erbe, D.V., Wang, S., Xing, Y. & Tobin J.F. Small molecule ligands define a binding site on the immune regulatory protein B7.1. J. Biol. Chem. 277, 7363–7368 (2002).

    CAS  PubMed  Google Scholar 

  80. Gil, D. et al. Recruitment of Nck by CD3ε reveals a ligand-lnduced conformational change essential for T cell receptor signaling and synapse formation. Cell 109, 901–912 (2002).

    CAS  PubMed  Google Scholar 

  81. Gao, G.F., Rao, Z. & Bell, J.I. Molecular coordination of αβ T-cell receptors and coreceptors CD8 and CD4 in their recognition of peptide-MHC ligands. Trends Immunol. 23, 408–413 (2002).

    PubMed  Google Scholar 

  82. Lawrence, M.C. & Colman, P.M. Shape complementarity at protein/protein interfaces. J. Mol. Biol. 234, 946–950 (1993).

    CAS  PubMed  Google Scholar 

  83. Locksley, R.M., Reiner, S.L., Hatam, F., Littman, D.R. & Killeen, N. Helper T cells without CD4: control of leishmaniasis in CD4-deficient mice. Science 261, 1448–1451 (1993).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank E.Y. Jones, D.I. Stuart, A.N. Barclay and P. Sørensen for valuable discussion, and J.T. Finch for permission to use the electron micrographs of rat CD4 ectodomains. S.J.D. and P.A.v.d.M. are supported by the Wellcome Trust and the UK Medical Research Council, respectively. S.I. is supported by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan. L.F. is supported by the Karen Elise Jensen Foundation, The Danish MS Society and the UK Medical Research Council.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Simon J. Davis or P. Anton van der Merwe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davis, S., Ikemizu, S., Evans, E. et al. The nature of molecular recognition by T cells. Nat Immunol 4, 217–224 (2003). https://doi.org/10.1038/ni0303-217

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni0303-217

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing