Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of the murine NK cell–activating receptor NKG2D at 1.95 Å

Abstract

NKG2D, a homodimeric lectin-like receptor, is a unique stimulatory molecule that is found on natural killer cells, T cells and activated macrophages. The natural ligands for murine NKG2D are distant major histocompatibility complex homologs, retinoic acid early transcript (Rae1) and H-60 minor histocompatibility antigen. The crystal structure of the extracellular region of murine NKG2D reveals close homology with other C-type lectin receptors such as CD94, Ly49A, rat MBP-A and CD69. However, the precise mode of dimeric assembly varies among these natural killer receptors, as well as their surface topography and electrostatic properties. The NKG2D structure provides the first structural insights into the role and ligand specificity of this stimulatory receptor in the innate and adaptive immune system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Anatomy of NKG2D and comparison with other C-type lectins.
Figure 2: Structure of the murine NKG2D homodimer.
Figure 3: NKG2D dimer interactions.
Figure 4: Comparison of disulfide bridges at the dimer interfaces of NKG2D, CD94 and Ly49A.
Figure 5: Sequence alignment of murine NKG2D with members of C-type lectin family.
Figure 6: Comparison of dimeric assembly and electrostatic surface potential of NKG2D, CD94 and Ly49A.
Figure 7: Potential interacting surfaces of murine and human NKG2D with ligands MICA and MICB.

Similar content being viewed by others

References

  1. Lanier, L. L. On guard—activating NK cell receptors. Nature Immunol. 2, 23–27 (2001).

    Article  CAS  Google Scholar 

  2. Karre, K., Ljunggren, H. G., Piontek, G. & Kiessling, R. Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature 319, 675–678 (1986).

    Article  CAS  PubMed  Google Scholar 

  3. Lanier, L. L. NK cell receptors. Annu. Rev. Immunol. 16, 359–393 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Wagtmann, N. et al. Molecular clones of the p58 NK cell receptor reveal immunoglobulin- related molecules with diversity in both the extra- and intracellular domains. Immunity 2, 439–449 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Colonna, M. & Samaridis, J. Cloning of immunoglobulin-superfamily members associated with HLA-C and HLA-B recognition by human natural killer cells. Science 268, 405–408 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Yokoyama, W. M., Jacobs, L. B., Kanagawa, O., Shevach, E. M. & Cohen, D. I. A murine T lymphocyte antigen belongs to a supergene family of type II integral membrane proteins. J. Immunol. 143, 1379–1386 (1989).

    CAS  PubMed  Google Scholar 

  7. Maenaka, K., Juji, T., Stuart, D. I. & Jones, E. Y. Crystal structure of the human p58 killer cell inhibitory receptor (KIR2DL3) specific for HLA-Cw3-related MHC class I. Struct. Fold Des. 7, 391–398 (1999).

    Article  CAS  Google Scholar 

  8. Fan, Q. R. et al. Structure of the inhibitory receptor for human natural killer cells resembles haematopoietic receptors. Nature 389, 96–100 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Snyder, G. A., Brooks, A. G. & Sun, P. D. Crystal structure of the HLA-Cw3 allotype-specific killer cell inhibitory receptor KIR2DL2. Proc. Natl Acad. Sci. USA 96, 3864–3869 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chapman, T. L., Heikeman, A. P. & Bjorkman, P. J. The inhibitory receptor LIR-1 uses a common binding interaction to recognize class I MHC molecules and the viral homolog UL18. Immunity 11, 603–613 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Boyington, J. C., Motyka, S. A., Schuck, P., Brooks, A. G. & Sun, P. D. Crystal structure of an NK cell immunoglobulin-like receptor in complex with its class I MHC ligand. Nature 405, 537–543 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Renedo, M. et al. A sequence-ready physical map of the region containing the human natural killer gene complex on chromosome 12p12.3-p13.2. Genomics 65, 129–136 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Ho, E. L. et al. Murine Nkg2d and Cd94 are clustered within the natural killer complex and are expressed independently in natural killer cells. Proc. Natl Acad. Sci. USA 95, 6320–6325 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Boyington, J. C. et al. Structure of CD94 reveals a novel C-type lectin fold: implications for the NK cell-associated CD94/NKG2 receptors. Immunity 10, 75–82 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Llera, A. S., Viedma, F., Sanchez-Madrid, F. & Tormo, J. Crystal structure of the C-type lectin-like domain from the human hematopoietic cell receptor CD69. J. Biol. Chem. (in the press, 2001).

    Google Scholar 

  16. Natarajan, K., Sawicki, M. W., Margulies, D. H. & Mariuzza, R. A. Crystal structure of human CD69: A C-type lectin-like activation marker of hematopoietic cells. Biochemistry 39, 14779–14786 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Tormo, J., Natarajan, K., Margulies, D. H. & Mariuzza, R. A. Crystal structure of a lectin-like natural killer cell receptor bound to its MHC class I ligand. Nature 402, 623–631 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Moretta, A., Biassoni, R., Bottino, C., Mingari, M. C. & Moretta, L. Natural cytotoxicity receptors that trigger human NK-cell-mediated cytolysis. Immunol. Today 21, 228–234 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Lanier, L. L. Turning on natural killer cells. J. Exp. Med. 191, 1259–1262 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lanier, L. L., Corliss, B., Wu, J. & Phillips, J. H. Association of DAP12 with activating CD94/NKG2C NK cell receptors. Immunity 8, 693–701 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Lanier, L. L., Corliss, B. C., Wu, J., Leong, C. & Phillips, J.H. Immunoreceptor DAP12 bearing a tyrosine-based activation motif is involved in activating NK cells. Nature 391, 703–707 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Wu, J. et al. An activating immunoreceptor complex formed by NKG2D and DAP10. Science 285, 730–732 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Bauer, S. et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285, 727–729 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Diefenbach, A., Jamieson, A. M., Liu, S. D., Shastri, N. & Raulet, D. H. Ligands for the murine NKG2D receptor: expression by tumor cells and activation of NK cells and macrophages. Nature Immunol. 1, 119–126 (2000).

    Article  CAS  Google Scholar 

  25. Vance, R. E., Jamieson, A. M. & Raulet, D. H. Recognition of the class Ib molecule Qa-1(b) by putative activating receptors CD94/NKG2C and CD94/NKG2E on mouse natural killer cells. J. Exp. Med. 190, 1801–1812 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cosman, D. et al. The human cytomegalovirus (HCMV) glycoprotein, UL16, binds to the MHC class I-related protein, MICB/PERB11, and to two novel, MHC class I-related molecules, ULBP1 and ULBP2. FASEB J. 14, 1018 (2000).

    Google Scholar 

  27. Chalupny, J. et al. Soluble forms of the novel MHC class I-related molecules, ULBP1 and ULBP2, bind to, and functionally activate NK cells. FASEB J. 14, 1018 (2000).

    Google Scholar 

  28. Cerwenka, A. et al. Retinoic acid early inducible genes define a ligand family for the activating NKG2D receptor in mice. Immunity 12, 721–727 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Groh, V. et al. Broad tumor-associated expression and recognition by tumor-derived γδ T cells of MICA and MICB. Proc. Natl Acad. Sci. USA 96, 6879–6884 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Day, A. J. The C-type carbohydrate recognition domain (CRD) superfamily. Biochem. Soc. Trans. 22, 83–88 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Kolatkar, A. R. et al. Mechanism of N-acetylgalactosamine binding to a C-type animal lectin carbohydrate-recognition domain. J. Biol. Chem. 273, 19502–19508 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138 (1993).

    Article  CAS  PubMed  Google Scholar 

  33. Lopez-Botet, M., Llano, M., Navarro, F. & Bellon, T. NK cell recognition of non-classical HLA class I molecules. Semin. Immunol. 12, 109–119 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Richardson, J. S. The anatomy and taxonomy of protein structure. Adv. Protein Chem. 34, 167–339 (1981).

    Article  CAS  PubMed  Google Scholar 

  35. Lawrence, M. C. & Colman, P. M. Shape complementarity at protein-protein interfaces. J. Mol. Biol. 234, 946–950 (1993).

    Article  CAS  PubMed  Google Scholar 

  36. Connolly, M. L. Analytical molecular surface calculation. J. Appl. Cryst. 16, 548–558 (1983).

    Article  CAS  Google Scholar 

  37. CCP4. The Collaborative Computational Project Number 4, suite programs for protein crystallography. Acta Cryst. 50, 760–763 (1994).

  38. Brooks, A. G., Posch, P. E., Scorzelli, C. J., Borrego, F. & Coligan, J. E. NKG2A complexed with CD94 defines a novel inhibitory natural killer cell receptor. J. Exp. Med. 185, 795–800 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Colman, P. M. et al. Three-dimensional structure of a complex of antibody with influenza virus neuraminidase. Nature 326, 358–363 (1987).

    Article  CAS  PubMed  Google Scholar 

  40. Li, P. et al. Crystal structure of the MHC class I homolog MIC-A, a γδ T cell ligand. Immunity 10, 577–584 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Garboczi, D. N., Hung, D. T. & Wiley, D. C. HLA-A2-peptide complexes: refolding and crystallization of molecules expressed in Escherichia coli and complexed with single antigenic peptides. Proc. Natl Acad. Sci. USA 89, 3429–3433 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Busch, D. H., Pilip, I. M., Vijh, S. & Pamer, E. G. Coordinate regulation of complex T cell populations responding to bacterial infection. Immunity 8, 353–362 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Otwinowski, Z. & Minor, W. Processing of x-ray diffraction data collected in oscillation mode. Meth. Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  44. Pannu, N. S. & Read, R. J. Improved structure refinement through maximum likelyhood. Acta Cryst. A52, 659–668 (1996).

    Article  CAS  Google Scholar 

  45. Brünger, A. T. et al. Crystallography and NMR system (CNS): A new software system for macromolecular structure determination. Acta Cryst. 54, 905–921 (1998).

    Article  Google Scholar 

  46. Read, R. J. Improved fourier coefficients for maps using phases from partial structures with errors. Acta Cryst. 42, 140–149 (1986).

    Article  Google Scholar 

  47. Jones, T. A., Cowan, S., Zou, J. Y. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Cryst. 47, 110–119 (1991).

    Article  Google Scholar 

  48. Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thornton, J. M. PROCHECK: A program to check the stereochemical quality of protein structures. J. Appl. Cryst. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  49. Hooft, R. W., Vriend, G., Sander, C. & Abola, E. E. Errors in protein structures. Nature 381, 272 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. Sheriff, S., Hendrickson, W. A. & Smith, J. L. Structure of myohemerythrin in the azidomet state at 1.7/1.3 Å resolution. J. Mol. Biol. 197, 273–296 (1987).

    Article  CAS  PubMed  Google Scholar 

  51. Esnouf, R. M. An extensively modified version of MOLSCRIPT that includes greatly enhanced coloring capabilities. J. Mol. Graph. 15, 132–134 (1997).

    Article  CAS  Google Scholar 

  52. Merritt, E. A. & Murphy, M. E. P. Raster3D Version 2.0 - A program for photorealistic molecular graphics. Acta Cryst. 50, 869–873 (1994).

    CAS  Google Scholar 

  53. Berman, H. M. et al. The Protein Data Bank. Nucleic Acids Res . 28, 235–242 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S. Greasley, A. Heine, N. Larsen and X. Dai for data collection and processing; S. Greasley, A. Heine and J. Speir for helpful suggestions; A. Heine for invaluable advice with molecular replacement; R. Stanfield and J. Stevens for critical comments; R. Stanfield for help with computational calculations; M. Elsliger for computational assistance; and the staff of SSRL beamline 9-2. Supported by National Institutes of Health grants CA58896 and AI42266 (to I. A. W.); DK55037 and AI62267 (to L. T.); a Gerhard Hess research fellowship of the Deutsche Forschungsgemeinschaft (to D. H. B); a post-doctoral fellowship of the German Academic Exchange Service (to M. G. R.); and a National Science Foundation predoctoral fellowship (to D. W. W.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dirk H. Busch or Ian A. Wilson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolan, D., Teyton, L., Rudolph, M. et al. Crystal structure of the murine NK cell–activating receptor NKG2D at 1.95 Å. Nat Immunol 2, 248–254 (2001). https://doi.org/10.1038/85311

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/85311

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing