Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Efficient T cell activation requires an optimal dwell-time of interaction between the TCR and the pMHC complex

Abstract

Cytotoxic T cell (CTL) activation by antigen requires the specific detection of peptide–major histo-compatibility class I (pMHC) molecules on the target-cell surface by the T cell receptor (TCR). We examined the effect of mutations in the antigen-binding site of a Kb-restricted TCR on T cell activation, antigen binding and dissociation from antigen. These parameters were also examined for variants derived from a Kd-restricted peptide that was recognized by a CTL clone. Using these two independent systems, we show that T cell activation can be impaired by mutations that either decrease or increase the binding half-life of the TCR-pMHC interaction. Our data indicate that efficient T cell activation occurs within an optimal dwell-time range of TCR-pMHC interaction. This restricted dwell-time range is consistent with the exclusion of either extremely low or high affinity T cells from the expanded population during immune responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Point mutations within the CDR3β loop of the wild-type N30.7 TCR alter antigen-induced T cell activation, TCR-antigen binding and TCR-antigen dissociation.
Figure 2: A point mutation in the α2-helix of Kb restores recognition of VSV peptide by the G99A and G97-99A TCR mutants.
Figure 3: CTL activation can be impaired by a mutation in the antigenic peptide that increases the half-life for the TCR-pMHC interaction.
Figure 4: Correlation between the half-life of the TCR-pMHC interaction and T cell activation derived from results obtained with the Kb- and Kd-restricted TCRs.

Similar content being viewed by others

References

  1. Joyce, S. & Nathenson, S. G. Alloreactivity, antigen recognition and T-cell selection: three diverse T-cell recognition problems with a common solution. Immunol. Rev. 154, 59–103 (1996).

    Article  CAS  Google Scholar 

  2. Garcia, K. C., Teyton, L. & Wilson, I. A. Structural basis of T cell recognition. Annu. Rev. Immunol. 17, 369–397 (1999).

    Article  CAS  Google Scholar 

  3. Sykulev, Y., Joo, M., Vturina, I., Tsomides, T. J. & Eisen, H. N. Evidence that a single peptide-MHC complex on a target cell can elicit a cytolytic T cell response. Immunity. 4, 565–571 (1996).

    Article  CAS  Google Scholar 

  4. Eisen, H. N., Sykulev, Y. & Tsomides, T. J. Antigen-specific T-cell receptors and their reactions with complexes formed by peptides with major histocompatibility complex proteins. Adv. Protein Chem. 49, 1–56 (1996).

    Article  CAS  Google Scholar 

  5. Valitutti, S. & Lanzavecchia, A. Serial triggering of TCRs: a basis for the sensitivity and specificity of antigen recognition. Immunol. Today 18, 299–304 (1997).

    Article  CAS  Google Scholar 

  6. Valitutti, S., Dessing, M., Aktories, K., Gallati, H. & Lanzavecchia, A. Sustained signaling leading to T cell activation results from prolonged T cell receptor occupancy. Role of T cell actin cytoskeleton. J. Exp. Med. 181, 577–584 (1995).

    Article  CAS  Google Scholar 

  7. Valitutti, S., Muller, S., Cella, M., Padovan, E. & Lanzavecchia, A. Serial triggering of many T-cell receptors by a few peptide-MHC complexes. Nature 375, 148–151 (1995).

    Article  CAS  Google Scholar 

  8. Lanzavecchia, A., Lezzi, G. & Viola, A. From TCR engagement to T cell activation: a kinetic view of T cell behavior. Cell 96, 1–4 (1999).

    Article  CAS  Google Scholar 

  9. Davis, M. M. et al. Ligand recognition by αβ T cell receptors. Annu. Rev. Immunol. 16, 523–544 (1998).

    Article  CAS  Google Scholar 

  10. Foote, J. & Eisen, H. N. Breaking the affinity ceiling for antibodies and T cell receptors. Proc. Natl Acad. Sci. USA 97, 10679–10681 (2000).

    Article  CAS  Google Scholar 

  11. McKeithan, T. W. Kinetic proofreading in T-cell receptor signal transduction. Proc. Natl Acad. Sci. USA 92, 5042–5046 (1995).

    Article  CAS  Google Scholar 

  12. Rabinowitz, J. D., Beeson, C., Lyons, D. S., Davis, M. M. & McConnell, H. M. Kinetic discrimination in T-cell activation Proc. Natl Acad. Sci. USA 93, 1401–1405 (1996).

    Article  CAS  Google Scholar 

  13. Kersh, G. J., Kersh, E. N., Fremont, D. H. & Allen, P. M. High- and low-potency ligands with similar affinities for the TCR: the importance of kinetics in TCR signaling. Immunity 9, 817–826 (1998).

    Article  CAS  Google Scholar 

  14. Grakoui, A. et al. The immunological synapse: a molecular machine controlling T cell activation. Science 285, 221–227 (1999).

    Article  CAS  Google Scholar 

  15. Kersh, E. N., Shaw, A. S. & Allen, P. M. Fidelity of T cell activation through multistep T cell receptor ζ phosphorylation. Science 281, 572–575 (1998).

    Article  CAS  Google Scholar 

  16. Alam, S. M. et al. T-cell-receptor affinity and thymocyte positive selection. Nature 381, 616–620 (1996).

    Article  CAS  Google Scholar 

  17. Sykulev, Y., Vugmeyster, Y., Brunmark, A., Ploegh, H. L. & Eisen, H. N. Peptide antagonism and T cell receptor interactions with peptide-MHC complexes. Immunity. 9, 475–483 (1998).

    Article  CAS  Google Scholar 

  18. Kessler, B. M., Bassanini, P., Cerottini, J. C. & Luescher, I. F. Effects of epitope modification on T cell receptor-ligand binding and antigen recognition by seven H-2Kd-restricted cytotoxic T lymphocyte clones specific for a photoreactive peptide derivative. J. Exp. Med. 185, 629–640 (1997).

    Article  CAS  Google Scholar 

  19. Hudrisier, D. et al. The efficiency of antigen recognition by CD8+ CTL clones is determined by the frequency of serial TCR engagement. J. Immunol. 161, 553–562 (1998).

    CAS  PubMed  Google Scholar 

  20. Degano, M. et al. A functional hot spot for antigen recognition in a superagonist TCR/MHC complex. Immunity 12, 251–261 (2000).

    Article  CAS  Google Scholar 

  21. Baker, B. M., Gagnon, S. J., Biddison, W. E. & Wiley, D. C. Conversion of a T Cell Antagonist into an Agonist by Repairing a Defect in the TCR/Peptide/MHC Interface. Implications for TCR Signaling. Immunity 13, 475–484 (2000).

    Article  CAS  Google Scholar 

  22. Wang, F. et al. On defining the rules for interactions between the T cell receptor and its ligand: a critical role for a specific amino acid residue of the T cell receptor β chain. Proc. Natl Acad. Sci. USA 95, 5217–5222 (1998).

    Article  CAS  Google Scholar 

  23. Ono, T., DiLorenzo, T. P., Wang, F., Kalergis, A. M. & Nathenson, S. G. Alterations in TCR-MHC contacts subsequent to cross-recognition of class I MHC and singly substituted peptide variants. J. Immunol. 161, 5454–5463 (1998).

    CAS  PubMed  Google Scholar 

  24. van Bleek, G. M. & Nathenson, S. G. Isolation of an endogenously processed immunodominant viral peptide from the class I H-2Kb molecule. Nature 348, 213–216 (1990).

    Article  CAS  Google Scholar 

  25. Goyarts, E. C. et al. Point mutations in the β chain CDR3 can alter the T cell receptor recognition pattern on an MHC class I/peptide complex over a broad interface area. Mol. Immunol. 35, 593–607 (1998).

    Article  CAS  Google Scholar 

  26. Kalergis, A. M. et al. A simplified procedure for the preparation of MHC/peptide tetramers: chemical biotinylation of an unpaired cysteine engineered at the C-terminus of MHC-I. J. Immunol. Methods 234, 61–70 (2000).

    Article  CAS  Google Scholar 

  27. Geier, S. S., Zeff, R. A., McGovern, D. M., Rajan, T. V. & Nathenson, S. G. An approach to the study of structure-function relationships of MHC class I molecules: isolation and serologic characterization of H-2Kb somatic cell variants. J. Immunol. 137, 1239–1243 (1986).

    CAS  PubMed  Google Scholar 

  28. Imarai, M., Goyarts, E. C., van Bleek, G. M. & Nathenson, S. G. Diversity of T cell receptors specific for the VSV antigenic peptide (N52-59) bound by the H-2Kb class I molecule. Cell. Immunol. 160, 33–42 (1995).

    Article  CAS  Google Scholar 

  29. Zeff, R. A., Gopas, J., Steinhauer, E., Rajan, T. V. & Nathenson, S. G. Analysis of somatic cell H-2 variants to define the structural requirements for class I antigen expression. J. Immunol. 137, 897–903 (1986).

    CAS  PubMed  Google Scholar 

  30. Sun, R. et al. Evidence That the Antigen Receptors of Cytotoxic T Lymphocytes Interact with a Common Recognition Pattern on the H-2Kb Molecule. Immunity 3, 573–592 (1995).

    Article  CAS  Google Scholar 

  31. Romero, P. et al. Immunization with synthetic peptides containing a defined malaria epitope induces a highly diverse cytotoxic T lymphocyte response. J. Immunol. 148, 1871–1878 (1992).

    CAS  PubMed  Google Scholar 

  32. Luescher, I. F. et al. Structural analysis of TCR-ligand interactions studied on H-2Kd- restricted cloned CTL specific for a photoreactive peptide derivative. Immunity 3, 51–63 (1995).

    Article  CAS  Google Scholar 

  33. Manning, T. C., Parke, E. A., Teyton, L. & Kranz, D. M. Effects of complementarity determining region mutations on the affinity of an α/β T cell receptor: measuring the energy associated with CD4/CD8 repertoire skewing. J. Exp. Med. 189, 461–470 (1999).

    Article  CAS  Google Scholar 

  34. Kessler, B. et al. T cell recognition of hapten. Anatomy of T cell receptor binding of a H-2kd-associated photoreactive peptide derivative. J. Biol. Chem. 274, 3622–3631 (1999).

    Article  CAS  Google Scholar 

  35. Holler, P. D. et al. In vitro evolution of a T cell receptor with high affinity for peptide/MHC. Proc. Natl Acad. Sci. USA 97, 5387–5392 (2000).

    Article  CAS  Google Scholar 

  36. Kessler, B., Hudrisier, D., Cerottini, J. C. & Luescher, I. F. Role of CD8 in aberrant function of cytotoxic T lymphocytes. J. Exp. Med. 186, 2033–2038 (1997).

    Article  CAS  Google Scholar 

  37. Busch, D. H. & Pamer, E. G. T cell affinity maturation by selective expansion during infection. J. Exp. Med. 189, 701–710 (1999).

    Article  CAS  Google Scholar 

  38. Savage, P. A., Boniface, J. J. & Davis, M. M. A kinetic basis for T cell receptor repertoire selection during an immune response. Immunity 10, 485–492 (1999).

    Article  CAS  Google Scholar 

  39. Amrani, A. et al. Progression of autoimmune diabetes driven by avidity maturation of a T-cell population. Nature 406, 739–742 (2000).

    Article  CAS  Google Scholar 

  40. Van Pel, A., De Plaen, E. & Boon, T. Selection of highly transfectable variant from mouse mastocytoma P815. Somat. Cell Mol. Genet. 11, 467–475 (1985).

    Article  CAS  Google Scholar 

  41. Joyce, S., Sun, R. & Nathenson, S. G. Mapping the orientation of an antigenic peptide bound in the antigen binding groove of H-2Kb using a monoclonal antibody. Biochem. Biophys. Res. Commun. 186, 1449–1454 (1992).

    Article  CAS  Google Scholar 

  42. Kalergis, A. M. et al. Single amino acid replacements in an antigenic peptide are sufficient to alter the TCR V β repertoire of the responding CD8+ cytotoxic lymphocyte population. J. Immunol. 162, 7263–7270 (1999).

    CAS  PubMed  Google Scholar 

  43. Arcaro, A. et al. Essential role of CD8 palmitoylation in CD8 coreceptor function. J. Immunol. 165, 2068–2076 (2000).

    Article  CAS  Google Scholar 

  44. Kalergis, A. M. & Nathenson, S. G. Altered peptide ligand-mediated TCR antagonism can be modulated by a change in a single amino acid residue within the CDR3 β of an MHC I-restricted TCR. J. Immnunol. 165, 280–285 (2000).

    Article  CAS  Google Scholar 

  45. Pasternack, M. S., Verret, C. R., Liu, M. A. & Eisen, H. N. Serine esterase in cytolytic T lymphocytes. Nature 322, 740–743 (1986).

    Article  CAS  Google Scholar 

  46. Takayama, H. et al. Antigen receptor-triggered secretion of a trypsin-type esterase from cytotoxic T lymphocytes. J. Immunol. 138, 566–569 (1987).

    CAS  PubMed  Google Scholar 

  47. Crawford, F., Kozono, H., White, J., Marrack, P. & Kappler, J. Detection of antigen-specific T cells with multivalent soluble class II MHC covalent peptide complexes. Immunity 8, 675–682 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Porcelli, M. Scharff, M. Roden, T. DiLorenzo, D. Ostrov, S. Honda, R. Carver, C. Riedel and C. Kowal for critical reading of the manuscript. We also thank D. Gebhard at the FACS facility for technical assistance and M. Muranelli for secretarial assistance. Supported by National Institutes of Health grants RO1 AI07289-32, 5T52CA09173-23 and RO1 AR42533-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanley G. Nathenson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalergis, A., Boucheron, N., Doucey, MA. et al. Efficient T cell activation requires an optimal dwell-time of interaction between the TCR and the pMHC complex. Nat Immunol 2, 229–234 (2001). https://doi.org/10.1038/85286

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/85286

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing