Abstract
Cytotoxic T cell (CTL) activation by antigen requires the specific detection of peptide–major histo-compatibility class I (pMHC) molecules on the target-cell surface by the T cell receptor (TCR). We examined the effect of mutations in the antigen-binding site of a Kb-restricted TCR on T cell activation, antigen binding and dissociation from antigen. These parameters were also examined for variants derived from a Kd-restricted peptide that was recognized by a CTL clone. Using these two independent systems, we show that T cell activation can be impaired by mutations that either decrease or increase the binding half-life of the TCR-pMHC interaction. Our data indicate that efficient T cell activation occurs within an optimal dwell-time range of TCR-pMHC interaction. This restricted dwell-time range is consistent with the exclusion of either extremely low or high affinity T cells from the expanded population during immune responses.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Joyce, S. & Nathenson, S. G. Alloreactivity, antigen recognition and T-cell selection: three diverse T-cell recognition problems with a common solution. Immunol. Rev. 154, 59–103 (1996).
Garcia, K. C., Teyton, L. & Wilson, I. A. Structural basis of T cell recognition. Annu. Rev. Immunol. 17, 369–397 (1999).
Sykulev, Y., Joo, M., Vturina, I., Tsomides, T. J. & Eisen, H. N. Evidence that a single peptide-MHC complex on a target cell can elicit a cytolytic T cell response. Immunity. 4, 565–571 (1996).
Eisen, H. N., Sykulev, Y. & Tsomides, T. J. Antigen-specific T-cell receptors and their reactions with complexes formed by peptides with major histocompatibility complex proteins. Adv. Protein Chem. 49, 1–56 (1996).
Valitutti, S. & Lanzavecchia, A. Serial triggering of TCRs: a basis for the sensitivity and specificity of antigen recognition. Immunol. Today 18, 299–304 (1997).
Valitutti, S., Dessing, M., Aktories, K., Gallati, H. & Lanzavecchia, A. Sustained signaling leading to T cell activation results from prolonged T cell receptor occupancy. Role of T cell actin cytoskeleton. J. Exp. Med. 181, 577–584 (1995).
Valitutti, S., Muller, S., Cella, M., Padovan, E. & Lanzavecchia, A. Serial triggering of many T-cell receptors by a few peptide-MHC complexes. Nature 375, 148–151 (1995).
Lanzavecchia, A., Lezzi, G. & Viola, A. From TCR engagement to T cell activation: a kinetic view of T cell behavior. Cell 96, 1–4 (1999).
Davis, M. M. et al. Ligand recognition by αβ T cell receptors. Annu. Rev. Immunol. 16, 523–544 (1998).
Foote, J. & Eisen, H. N. Breaking the affinity ceiling for antibodies and T cell receptors. Proc. Natl Acad. Sci. USA 97, 10679–10681 (2000).
McKeithan, T. W. Kinetic proofreading in T-cell receptor signal transduction. Proc. Natl Acad. Sci. USA 92, 5042–5046 (1995).
Rabinowitz, J. D., Beeson, C., Lyons, D. S., Davis, M. M. & McConnell, H. M. Kinetic discrimination in T-cell activation Proc. Natl Acad. Sci. USA 93, 1401–1405 (1996).
Kersh, G. J., Kersh, E. N., Fremont, D. H. & Allen, P. M. High- and low-potency ligands with similar affinities for the TCR: the importance of kinetics in TCR signaling. Immunity 9, 817–826 (1998).
Grakoui, A. et al. The immunological synapse: a molecular machine controlling T cell activation. Science 285, 221–227 (1999).
Kersh, E. N., Shaw, A. S. & Allen, P. M. Fidelity of T cell activation through multistep T cell receptor ζ phosphorylation. Science 281, 572–575 (1998).
Alam, S. M. et al. T-cell-receptor affinity and thymocyte positive selection. Nature 381, 616–620 (1996).
Sykulev, Y., Vugmeyster, Y., Brunmark, A., Ploegh, H. L. & Eisen, H. N. Peptide antagonism and T cell receptor interactions with peptide-MHC complexes. Immunity. 9, 475–483 (1998).
Kessler, B. M., Bassanini, P., Cerottini, J. C. & Luescher, I. F. Effects of epitope modification on T cell receptor-ligand binding and antigen recognition by seven H-2Kd-restricted cytotoxic T lymphocyte clones specific for a photoreactive peptide derivative. J. Exp. Med. 185, 629–640 (1997).
Hudrisier, D. et al. The efficiency of antigen recognition by CD8+ CTL clones is determined by the frequency of serial TCR engagement. J. Immunol. 161, 553–562 (1998).
Degano, M. et al. A functional hot spot for antigen recognition in a superagonist TCR/MHC complex. Immunity 12, 251–261 (2000).
Baker, B. M., Gagnon, S. J., Biddison, W. E. & Wiley, D. C. Conversion of a T Cell Antagonist into an Agonist by Repairing a Defect in the TCR/Peptide/MHC Interface. Implications for TCR Signaling. Immunity 13, 475–484 (2000).
Wang, F. et al. On defining the rules for interactions between the T cell receptor and its ligand: a critical role for a specific amino acid residue of the T cell receptor β chain. Proc. Natl Acad. Sci. USA 95, 5217–5222 (1998).
Ono, T., DiLorenzo, T. P., Wang, F., Kalergis, A. M. & Nathenson, S. G. Alterations in TCR-MHC contacts subsequent to cross-recognition of class I MHC and singly substituted peptide variants. J. Immunol. 161, 5454–5463 (1998).
van Bleek, G. M. & Nathenson, S. G. Isolation of an endogenously processed immunodominant viral peptide from the class I H-2Kb molecule. Nature 348, 213–216 (1990).
Goyarts, E. C. et al. Point mutations in the β chain CDR3 can alter the T cell receptor recognition pattern on an MHC class I/peptide complex over a broad interface area. Mol. Immunol. 35, 593–607 (1998).
Kalergis, A. M. et al. A simplified procedure for the preparation of MHC/peptide tetramers: chemical biotinylation of an unpaired cysteine engineered at the C-terminus of MHC-I. J. Immunol. Methods 234, 61–70 (2000).
Geier, S. S., Zeff, R. A., McGovern, D. M., Rajan, T. V. & Nathenson, S. G. An approach to the study of structure-function relationships of MHC class I molecules: isolation and serologic characterization of H-2Kb somatic cell variants. J. Immunol. 137, 1239–1243 (1986).
Imarai, M., Goyarts, E. C., van Bleek, G. M. & Nathenson, S. G. Diversity of T cell receptors specific for the VSV antigenic peptide (N52-59) bound by the H-2Kb class I molecule. Cell. Immunol. 160, 33–42 (1995).
Zeff, R. A., Gopas, J., Steinhauer, E., Rajan, T. V. & Nathenson, S. G. Analysis of somatic cell H-2 variants to define the structural requirements for class I antigen expression. J. Immunol. 137, 897–903 (1986).
Sun, R. et al. Evidence That the Antigen Receptors of Cytotoxic T Lymphocytes Interact with a Common Recognition Pattern on the H-2Kb Molecule. Immunity 3, 573–592 (1995).
Romero, P. et al. Immunization with synthetic peptides containing a defined malaria epitope induces a highly diverse cytotoxic T lymphocyte response. J. Immunol. 148, 1871–1878 (1992).
Luescher, I. F. et al. Structural analysis of TCR-ligand interactions studied on H-2Kd- restricted cloned CTL specific for a photoreactive peptide derivative. Immunity 3, 51–63 (1995).
Manning, T. C., Parke, E. A., Teyton, L. & Kranz, D. M. Effects of complementarity determining region mutations on the affinity of an α/β T cell receptor: measuring the energy associated with CD4/CD8 repertoire skewing. J. Exp. Med. 189, 461–470 (1999).
Kessler, B. et al. T cell recognition of hapten. Anatomy of T cell receptor binding of a H-2kd-associated photoreactive peptide derivative. J. Biol. Chem. 274, 3622–3631 (1999).
Holler, P. D. et al. In vitro evolution of a T cell receptor with high affinity for peptide/MHC. Proc. Natl Acad. Sci. USA 97, 5387–5392 (2000).
Kessler, B., Hudrisier, D., Cerottini, J. C. & Luescher, I. F. Role of CD8 in aberrant function of cytotoxic T lymphocytes. J. Exp. Med. 186, 2033–2038 (1997).
Busch, D. H. & Pamer, E. G. T cell affinity maturation by selective expansion during infection. J. Exp. Med. 189, 701–710 (1999).
Savage, P. A., Boniface, J. J. & Davis, M. M. A kinetic basis for T cell receptor repertoire selection during an immune response. Immunity 10, 485–492 (1999).
Amrani, A. et al. Progression of autoimmune diabetes driven by avidity maturation of a T-cell population. Nature 406, 739–742 (2000).
Van Pel, A., De Plaen, E. & Boon, T. Selection of highly transfectable variant from mouse mastocytoma P815. Somat. Cell Mol. Genet. 11, 467–475 (1985).
Joyce, S., Sun, R. & Nathenson, S. G. Mapping the orientation of an antigenic peptide bound in the antigen binding groove of H-2Kb using a monoclonal antibody. Biochem. Biophys. Res. Commun. 186, 1449–1454 (1992).
Kalergis, A. M. et al. Single amino acid replacements in an antigenic peptide are sufficient to alter the TCR V β repertoire of the responding CD8+ cytotoxic lymphocyte population. J. Immunol. 162, 7263–7270 (1999).
Arcaro, A. et al. Essential role of CD8 palmitoylation in CD8 coreceptor function. J. Immunol. 165, 2068–2076 (2000).
Kalergis, A. M. & Nathenson, S. G. Altered peptide ligand-mediated TCR antagonism can be modulated by a change in a single amino acid residue within the CDR3 β of an MHC I-restricted TCR. J. Immnunol. 165, 280–285 (2000).
Pasternack, M. S., Verret, C. R., Liu, M. A. & Eisen, H. N. Serine esterase in cytolytic T lymphocytes. Nature 322, 740–743 (1986).
Takayama, H. et al. Antigen receptor-triggered secretion of a trypsin-type esterase from cytotoxic T lymphocytes. J. Immunol. 138, 566–569 (1987).
Crawford, F., Kozono, H., White, J., Marrack, P. & Kappler, J. Detection of antigen-specific T cells with multivalent soluble class II MHC covalent peptide complexes. Immunity 8, 675–682 (1998).
Acknowledgements
We thank S. Porcelli, M. Scharff, M. Roden, T. DiLorenzo, D. Ostrov, S. Honda, R. Carver, C. Riedel and C. Kowal for critical reading of the manuscript. We also thank D. Gebhard at the FACS facility for technical assistance and M. Muranelli for secretarial assistance. Supported by National Institutes of Health grants RO1 AI07289-32, 5T52CA09173-23 and RO1 AR42533-5.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kalergis, A., Boucheron, N., Doucey, MA. et al. Efficient T cell activation requires an optimal dwell-time of interaction between the TCR and the pMHC complex. Nat Immunol 2, 229–234 (2001). https://doi.org/10.1038/85286
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/85286
This article is cited by
-
Chronic TCR-MHC (self)-interactions limit the functional potential of TCR affinity-increased CD8 T lymphocytes
Journal for ImmunoTherapy of Cancer (2019)
-
Cytomembrane nanovaccines show therapeutic effects by mimicking tumor cells and antigen presenting cells
Nature Communications (2019)
-
T cell engineering for adoptive T cell therapy: safety and receptor avidity
Cancer Immunology, Immunotherapy (2019)
-
Micromolar affinity CAR T cells to ICAM-1 achieves rapid tumor elimination while avoiding systemic toxicity
Scientific Reports (2017)
-
Driving gene-engineered T cell immunotherapy of cancer
Cell Research (2017)