Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An unexpected version of horror autotoxicus: anaphylactic shock to a self-peptide

Abstract

EAE can refer either to experimental autoimmune encephalomyelitis or experimental allergic encephalomyelitis. Although EAE is classically a prototypic T helper 1 (TH1) cell–mediated autoimmune disease, it can also be induced by TH2 cells. Characteristically, the most severe manifestation of allergy, anaphylaxis, is associated with exposure to a foreign antigen that is often derived from medication, insect venom or food. We report here that, after self-tolerance to myelin is destroyed, anaphylaxis may be triggered by a self-antigen, in this case a myelin peptide. “Horror autotoxicus”, which was initially described by Ehrlich, may not only include autoimmunity to self, it may also encompass immediate hypersensitivity to self, which leads to shock and rapid death.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Challenge with soluble PLPp(139–151) after the acute phase of EAE causes signs of anaphylactic shock.
Figure 2: The reactions that occur after challenge with PLPp(139–151) are associated with a drop in body temperature and an increase in enhanced respiratory pause.
Figure 3: Histopathology of tissue sections obtained from a 12-week-old SJL/J mouse that was killed when it became moribund 20 min after apparent anaphylaxis.
Figure 4: Titers of anti-PLPp(139–151) of the IgG1 isotype progressively increased during the course of EAE compared to IgG2a and to total IgE.
Figure 5: Mice with EAE that develop anaphylactic shock after challenge with native PLPp(139–151) exhibit a much lower mast cell degranulation compared to mice that developed IgE-dependent anaphylaxis.
Figure 6: Absence of allergic reactions after challenge with MBPAc(1–11) or with PLPp(178–191) is confirmed by the absence of changes in body temperature.

Similar content being viewed by others

References

  1. Vandenbark, A. A. et al. Specificity of T lymphocyte lines for peptides of myelin basic protein. J. Immunol. 135, 229–233 (1985).

    CAS  PubMed  Google Scholar 

  2. Brosnan, C. F., Selmaj, K. & Raine, C. S. Hypothesis: a role for tumor necrosis factor in immune-mediated demyelination and its relevance to multiple sclerosis. J. Neuroimmunol. 18, 87–94 (1988).

    Article  CAS  Google Scholar 

  3. Abbas, A. K., Murphy, K. M. & Sher, A. Functional diversity of helper T lymphocytes. Nature 383, 787–793 (1996).

    Article  CAS  Google Scholar 

  4. Bochner, B. S. & Lichtenstein, L. M. Anaphylaxis. N. Engl. J. Med. 324, 1785–1790 (1991).

    Article  CAS  Google Scholar 

  5. Galli, S. J. & Lantz, C. S. in Fundamental Immunology (ed. Paul, W. E.) 1137–1184 (Lippincott-Raven Press, Philadelphia, 1999).

    Google Scholar 

  6. Ishizaka, T. & Ishizaka, K. Activation of mast cells for mediator release through IgE receptors. Prog. Allergy 34, 188–235 (1984).

    CAS  PubMed  Google Scholar 

  7. Mota, I. & Wong, D. Homologous and heterologous passive cutaneous anaphylactic activity of mouse antisera during the course of immunization. Life Sci. 8, 813–820 (1969).

    Article  CAS  Google Scholar 

  8. Miyajima, I. et al. Systemic anaphylaxis in the mouse can be mediated largely through IgG1 and FcγRIII. Assessment of the cardiopulmonary changes, mast cell degranulation, and death associated with active or IgE- or IgG1-dependent passive anaphylaxis. J. Clin. Invest. 99, 901–914 (1997).

    Article  CAS  Google Scholar 

  9. Liblau, R. S., Singer, S. M. & McDevitt, H. O. Th1 and Th2 CD4+ T cells in the pathogenesis of organ-specific autoimmune diseases. Immunol. Today 16, 34–38 (1995).

    Article  CAS  Google Scholar 

  10. Lafaille, J. J. et al. Myelin basic protein-specific T helper 2 (Th2) cells cause experimental autoimmune encephalomyelitis in immunodeficient hosts rather than protect them from the disease. J. Exp. Med. 186, 307–312 (1997).

    Article  CAS  Google Scholar 

  11. Linthicum, D. S. Development of acute autoimmune encephalomyelitis in mice: factors regulating the effector phase of the disease. Immunobiology 162, 211–220 (1982).

    Article  CAS  Google Scholar 

  12. Dietsch, G. N. & Hinrichs, D. J. The role of mast cells in the elicitation of experimental allergic encephalomyelitis. J. Immunol. 142, 1476–1481 (1989).

    CAS  PubMed  Google Scholar 

  13. Bebo, B. F. Jr, Lee, C. H., Orr, E. L. & Linthicum, D. S. Mast cell-derived histamine and tumour necrosis factor: differences between SJL/J and BALB/c inbred strains of mice. Immunol. Cell. Biol. 74, 225–230 (1996).

    Article  CAS  Google Scholar 

  14. Brenner, T., Soffer, D., Shalit, M. & Levi-Schaffer, F. Mast cells in experimental allergic encephalomyelitis: characterization, distribution in the CNS and in vitro activation by myelin basic protein and neuropeptides. J. Neurol. Sci. 122, 210–213 (1994).

    Article  CAS  Google Scholar 

  15. Toms, R., Weiner, H. L. & Johnson, D. Identification of IgE-positive cells and mast cells in frozen sections of multiple sclerosis brains. J. Neuroimmunol. 30, 169–177 (1990).

    Article  CAS  Google Scholar 

  16. Olsson, Y. Mast cells in plaques of multiple sclerosis. Acta Neurol. Scand. 50, 611–618 (1974).

    Article  CAS  Google Scholar 

  17. Kruger, P. G. et al. Mast cells and multiple sclerosis: a light and electron microscopic study of mast cells in multiple sclerosis emphasizing staining procedures. Acta Neurol. Scand. 81, 31–36 (1990).

    Article  CAS  Google Scholar 

  18. Linthicum, D. S. & Frelinger, J. A. Acute autoimmune encephalomyelitis in mice. II. Susceptibility is controlled by the combination of H-2 and histamine sensitization genes. J. Exp. Med. 156, 31–40 (1982).

    Article  CAS  Google Scholar 

  19. Johnson, D., Seeldrayers, P. A. & Weiner, H. L. The role of mast cells in demyelination. 1. Myelin proteins are degraded by mast cell proteases and myelin basic protein and P2 can stimulate mast cell degranulation. Brain Res. 444, 195–198 (1988).

    Article  CAS  Google Scholar 

  20. Dines, K. C. & Powell, H. C. Mast cell interactions with the nervous system: relationship to mechanisms of disease. J. Neuropathol. Exp. Neurol. 56, 627–640 (1997).

    Article  CAS  Google Scholar 

  21. Secor, V. H., Secor, W. E., Gutekunst, C. A. & Brown, M. A. Mast cells are essential for early onset and severe disease in a murine model of multiple sclerosis. J. Exp. Med. 191, 813–822 (2000).

    Article  CAS  Google Scholar 

  22. Linthicum, D. S., Munoz, J. J. & Blaskett, A. Acute experimental autoimmune encephalomyelitis in mice. I. Adjuvant action of Bordetella pertussis is due to vasoactive amine sensitization and increased vascular permeability of the central nervous system. Cell. Immunol. 73, 299–310 (1982).

    Article  CAS  Google Scholar 

  23. Soloway, P. et al. Regulation of the immune response to peptide antigens: differential induction of immediate-type hypersensitivity and T cell proliferation due to changes in either peptide structure or major histocompatibility complex haplotype. J. Exp. Med. 174, 847–858 (1991).

    Article  CAS  Google Scholar 

  24. Dombrowicz, D. et al. Absence of FcɛRI α chain results in upregulation of FcγRIII-dependent mast cell degranulation and anaphylaxis. Evidence of competition between FcɛRI and FcγRIII for limiting amounts of FcR β and γ chains. J. Clin. Invest. 99, 915–925 (1997).

    Article  CAS  Google Scholar 

  25. Kuchroo, V. K. et al. A single TCR antagonist peptide inhibits experimental allergic encephalomyelitis mediated by a diverse T cell repertoire. J. Immunol. 153, 3326–3336 (1994).

    CAS  PubMed  Google Scholar 

  26. Hurtenbach, U., Lier, E., Adorini, L. & Nagy, Z. A. Prevention of autoimmune diabetes in non-obese diabetic mice by treatment with a class II major histocompatibility complex-blocking peptide. J. Exp. Med. 177, 1499–1504 (1993).

    Article  CAS  Google Scholar 

  27. Tuohy, V. K., Lu, Z., Sobel, R. A., Laursen, R. A. & Lees, M. B. Identification of an encephalitogenic determinant of myelin proteolipid protein for SJL mice. J. Immunol. 142, 1523–1527 (1989).

    CAS  PubMed  Google Scholar 

  28. Anderson, A. C. et al. High frequency of autoreactive myelin proteolipid protein-specific T cells in the periphery of naive mice: mechanisms of selection of the self-reactive repertoire. J. Exp. Med. 191, 761–770 (2000).

    Article  CAS  Google Scholar 

  29. Encinas, J. A., Weiner, H. L. & Kuchroo, V. K. Inheritance of susceptibility to experimental autoimmune encephalomyelitis. J. Neurosci. Res. 45, 655–669 (1996).

    Article  CAS  Google Scholar 

  30. Steinman, L. et al. Murine model for pertussis vaccine encephalopathy: linkage to H-2. Nature. 299, 738–740 (1982).

    Article  CAS  Google Scholar 

  31. Pribyl, T. M. et al. The human myelin basic protein gene is included within a 179-kilobase transcription unit: expression in the immune and central nervous systems. Proc. Natl Acad. Sci. USA 90, 10695–10699 (1993).

    Article  CAS  Google Scholar 

  32. Zelenika, D., Grima, B. & Pessac, B. A new family of transcripts of the myelin basic protein gene: expression in brain and in immune system. J. Neurochem. 60, 1574–1577 (1993).

    Article  CAS  Google Scholar 

  33. Radu, C. G., Anderton, S. M., Firan, M., Wraith, D. C. & Ward, E. S. Detection of autoreactive T cells in H-2(u) mice using peptide-MHC multimers. Int. Immunol. 12, 1553–1560 (2000).

    Article  CAS  Google Scholar 

  34. Liu, G. Y. et al. Low avidity recognition of self-antigen by T cells permits escape from central tolerance. Immunity. 3, 407–415 (1995).

    Article  CAS  Google Scholar 

  35. Zamvil, S. et al. T-cell clones specific for myelin basic protein induce chronic relapsing paralysis and demyelination. Nature 317, 355–358 (1985).

    Article  CAS  Google Scholar 

  36. Zamvil, S. S. et al. T-cell epitope of the autoantigen myelin basic protein that induces encephalomyelitis. Nature 324, 258–260 (1986).

    Article  CAS  Google Scholar 

  37. Jensen, M. A., Dayal, A. & Arnason, B. G. Cytokine secretion by δγ and αβ T cells in monophasic experimental autoimmune encephalomyelitis. J. Autoimmun. 12, 73–80 (1999).

    Article  CAS  Google Scholar 

  38. Begolka, W. S., Vanderlugt, C. L., Rahbe, S. M. & Miller, S. D. Differential expression of inflammatory cytokines parallels progression of central nervous system pathology in two clinically distinct models of multiple sclerosis. J. Immunol. 161, 4437–4446 (1998).

    CAS  PubMed  Google Scholar 

  39. Faquim-Mauro, E. L., Coffman, R. L., Abrahamsohn, I. A. & Macedo, M. S. Cutting edge: mouse IgG1 antibodies comprise two functionally distinct types that are differentially regulated by IL-4 and IL-12. J. Immunol. 163, 3572–3576 (1999).

    CAS  PubMed  Google Scholar 

  40. Kim, R. Anaphylaxis to protamine masquerading as an insulin allergy. Del. Med. J. 65, 17–23 (1993).

    CAS  PubMed  Google Scholar 

  41. Schernthaner, G. Immunogenicity and allergenic potential of animal and human insulins. Diabetes Care 16, 155–165 (1993).

    Article  Google Scholar 

  42. Bove, J. R. & McIntosh, S. Anaphylactic reaction to purified anti-hemophilic factor concentrate. Transfusion 28, 603 (1988).

  43. Shopnick, R. I. et al. Anaphylaxis after treatment with recombinant factor VIII. Transfusion 36, 358–361 (1996).

    Article  CAS  Google Scholar 

  44. Davis, H. M. et al. Lack of immune response to mouse IgG in hemophilia A patients treated chronically with Monoclate, a monoclonal antibody affinity purified factor VIII preparation. Thromb. Haemost. 63, 386–391 (1990).

    Article  CAS  Google Scholar 

  45. Oro, A. S., Guarino, T. J., Driver, R., Steinman, L. & Umetsu, D. T. Regulation of disease susceptibility: decreased prevalence of IgE- mediated allergic disease in patients with multiple sclerosis. J. Allergy Clin. Immunol. 97, 1402–1408 (1996).

    Article  CAS  Google Scholar 

  46. Kappos, L. et al. Induction of a non-encephalitogenic type 2 T helper-cell autoimmune response in multiple sclerosis after administration of an altered peptide ligand in a placebo-controlled, randomized phase II trial. Nature Med. 6, 1176–1182 (2000).

    Article  CAS  Google Scholar 

  47. Genain, C. P. et al. Late complications of immune deviation therapy in a nonhuman primate. Science 274, 2054–2057 (1996).

    Article  CAS  Google Scholar 

  48. Klein, L., Klugmann, M., Nave, K. A. & Kyewski, B. Shaping of the autoreactive T-cell repertoire by a splice variant of self protein expressed in thymic epithelial cells. Nature Med. 6, 56–61 (2000).

    Article  CAS  Google Scholar 

  49. Steinman, L. Multiple approaches to multiple sclerosis. Nature Med. 6, 15–16 (2000).

    Article  CAS  Google Scholar 

  50. Schwartz, M. & Cohen, I. R. Autoimmunity can benefit self-maintenance. Immunol. Today 21, 265–268 (2000).

    Article  CAS  Google Scholar 

  51. Ruiz, P. J. et al. Suppressive immunization with DNA encoding a self-peptide prevents autoimmune disease: modulation of T cell costimulation. J. Immunol. 162, 3336–3341 (1999).

    CAS  PubMed  Google Scholar 

  52. Waisman, A. et al. Suppressive vaccination with DNA encoding a variable region gene of the T-cell receptor prevents autoimmune encephalomyelitis and activates Th2 immunity. Nature Med. 2, 899–905 (1996).

    Article  CAS  Google Scholar 

  53. Spergel, J. M. et al. Epicutaneous sensitization with protein antigen induces localized allergic dermatitis and hyperresponsiveness to methacholine after single exposure to aerosolized antigen in mice. J. Clin. Invest. 101, 1614–1622 (1998).

    Article  CAS  Google Scholar 

  54. Wershil, B. K., Murakami, T. & Galli, S. J. Mast cell-dependent amplification of an immunologically nonspecific inflammatory response. Mast cells are required for the full expression of cutaneous acute inflammation induced by phorbol 12-myristate 13- acetate. J. Immunol. 140, 2356–2360 (1988).

    CAS  PubMed  Google Scholar 

  55. Williams, C. M. & Galli, S. J. Mast cells can amplify airway reactivity and features of chronic inflammation in an asthma model in mice. J. Exp. Med. 192, 455–462 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Z-S. Wang for technical assistance and H. McDevitt, T. Staehelin, A. Pedotti, P. Decamilli, P. Ghezzi and L. Stark for critical reading of the manuscript. Supported (in part) by a postdoctoral fellowship from the National Multiple Sclerosis Society (to R. P.) and support from the National Institutes of Health and the Phil N. Allen Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence Steinman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pedotti, R., Mitchell, D., Wedemeyer, J. et al. An unexpected version of horror autotoxicus: anaphylactic shock to a self-peptide. Nat Immunol 2, 216–222 (2001). https://doi.org/10.1038/85266

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/85266

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing