Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular basis for Rac2 regulation of phagocyte NADPH oxidase

Abstract

A Rac GTPase–regulated multiprotein NADPH oxidase is critical for the formation of reactive oxygen species (ROS) in phagocytic leukocytes and other nonphagocytic cells. NADPH oxidase reduces molecular oxygen to form superoxide anion in a two-step process. Electrons are initially transferred from NADPH to cytochrome b–associated FAD, then to cytochrome b heme and finally to molecular oxygen. We show here that Rac is required for both electron-transfer reactions. Mutational and biophysical analysis shows that Rac and p67phox independently regulate cytochrome b to catalyze the transfer of electrons from NADPH to FAD. However, they must interact with each other to induce the subsequent transfer of electrons from FAD to cytochrome b heme and molecular oxygen. This two-step model of regulation by Rac GTPase may provide a means of more effectively controlling the inflammatory responses of phagocytic leukocytes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dependence of NADPH oxidase electron transfer reactions on Rac2 concentration.
Figure 2: NADPH oxidase activity is p47phox independent.
Figure 3: The interaction of Rac2 with p67phox is required for the step 2, but not the Step 1, electron-transfer reaction.
Figure 4: The Rac2 insert domain is required for both step 1 and step 2 electron-transfer reactions.
Figure 5: Physical interaction of Rac2 with cyt b shown by fluorescence of mant-GppNHp-Rac2 complex.

Similar content being viewed by others

References

  1. Finkel, T. Signal transduction by reactive oxygen species in non-phagocytic cells. J. Leukoc. Biol. 65, 337–340 (1999).

    Article  CAS  Google Scholar 

  2. Babior, B. M. NADPH oxidase: an update. Blood 93, 1464–1476 (1999).

    CAS  PubMed  Google Scholar 

  3. Suh, Y. A. et al. Cell transformation by the superoxide-generating oxidase Mox1. Nature 401, 79–82 (1999).

    Article  CAS  Google Scholar 

  4. Banfi, B. et al. A mammalian H+ channel generated through alternative splicing of the NADPH oxidase homolog NOH-1. Science 287, 138–142 (2000).

    Article  CAS  Google Scholar 

  5. De Deken, X. et al. Cloning of two human thyroid cDNAs encoding new members of the NADPH oxidase family. J. Biol. Chem. 275, 23227–23233 (2000).

    Article  CAS  Google Scholar 

  6. Bokoch, G. M. Regulation of the human neutrophil NADPH oxidase by the Rac GTP-binding proteins. Curr. Opin. Cell Biol. 6, 212–218 (1994).

    Article  CAS  Google Scholar 

  7. Dorseuil, O. et al. Inhibition of superoxide production in B lymphocytes by Rac antisense oligonucleotides. J. Biol. Chem. 267, 20540–20542 (1992).

    CAS  PubMed  Google Scholar 

  8. Roberts, A. W. et al. Deficiency of the hematopoietic cell-specific Rho family GTPase Rac2 is characterized by abnormalities in neutrophil function and host defense. Immunity 10, 183–196 (1999).

    Article  CAS  Google Scholar 

  9. Ambruso, D. et al. Human neutrophil immunodeficiency syndrome is associated with an inhibitory Rac2 mutation. Proc. Natl Acad. Sci. USA 97, 4654–4659 (2000).

    Article  CAS  Google Scholar 

  10. Voncken, J. W. et al. Increased neutrophil respiratory burst in Bcr null mutants. Cell 80, 719–728 (1995).

    Article  CAS  Google Scholar 

  11. Quinn, M. T., Evans, T., Loetterle, L. R., Jesaitis, A. J. & Bokoch, G. M. Translocation of Rac correlates with NADPH oxidase activation: Evidence for equimolar translocation of oxidase components. J. Biol. Chem. 268, 20983–20987 (1993).

    CAS  PubMed  Google Scholar 

  12. Philips, M. R., Feoktistov, A., Pillinger, M. H. & Abramson, S. B. Translocation of p21rac2 from cytosol to plasma membrane is neither necessary nor sufficient for neutrophil NADPH oxidase activity. J. Biol. Chem. 270, 11514–11521 (1995).

    Article  CAS  Google Scholar 

  13. Dorseuil, O., Quinn, M. T. & Bokoch, G. M. Dissociation of Rac translocation from p47phox/p67phox movements in human neutrophils by tyrosine kinase inhibitors. J. Leukoc. Biol. 58, 108–113 (1995).

    Article  CAS  Google Scholar 

  14. Heyworth, P. G. et al. Requirement for post-translational processing of Rac GTP-binding proteins for activation of human neutrophil NADPH oxidase. Mol. Biol. Cell 4, 261–269 (1993).

    Article  CAS  Google Scholar 

  15. Abo, A., Boyhon, A., West, I., Thrasher, A. J. & Segal, A. W. Reconstitution of neutrophil NADPH oxidase activity in the cell-free system by four components: p67-phox, 47-phox, p21 rac1 and cytochrome b−245 . J. Biol. Chem. 267, 16767–16770 (1992).

    CAS  PubMed  Google Scholar 

  16. Cross, A. R., Yarchover, J. L. & Curnutte, J. T. The superoxide-generating system of human neutrophils possesses a novel diaphorase activity: Evidence for distinct regulation of electron flow within NADPH oxidase by p67phox and p47phox. J. Biol. Chem. 269, 21448–21454 (1994).

    CAS  PubMed  Google Scholar 

  17. Cross, A., Heyworth, P., Rae, J. & Curnutte, J. A variant x-linked chronic granulomatous disease patient (X91+) with partially functional cytochrome b. J. Biol. Chem. 270, 8194–8200 (1995).

    Article  CAS  Google Scholar 

  18. Cross, A., Rae, J. & Curnutte, J. Cytochrome b-245 of the neutrophil superoxide-generating sytem contains two non-identical hemes. J. Biol. Chem. 270, 17075–17077 (1995).

    Article  CAS  Google Scholar 

  19. Bromberg, Y. & Pick, E. Activation of NADPH-dependent superoxide production in a cell-free system by sodium dodecyl sulfate. J. Biol. Chem. 260, 13539–13545 (1985).

    CAS  PubMed  Google Scholar 

  20. Cross, A. R. & Curnutte, J. T. The cytosolic factors p47-phox and p67-phox have distinct roles in the regulation of electron flow in NADPH oxidase. J. Biol. Chem. 270, 6543–6548 (1995).

    Article  CAS  Google Scholar 

  21. Freeman, J. L. & Lambeth, J. D. NADPH oxidase activity is independent of p47-phox in vitro. J. Biol. Chem. 271, 22578–22582 (1996).

    Article  CAS  Google Scholar 

  22. Koshkin, V., Lotan, O. & Pick, E. The cytosolic component p47(phox) is not a sine qua non participant in the activation of NADPH oxidase but is required for optimal superoxide production. J. Biol. Chem. 271, 30326–30329 (1996).

    Article  CAS  Google Scholar 

  23. Diekmann, D., Abo, A., Johnston, C., Segal, A. W. & Hall, A. Interaction of Rac with p67phox and regulation of phagocytic NADPH oxidase activity. Science 265, 531–533 (1994).

    Article  CAS  Google Scholar 

  24. Xu, X., Barry, D. C., Settleman, J., Schwartz, M. A. & Bokoch, G. M. Differing structural requirements for GTPase-activating protein responsiveness and NADPH oxidase activation by Rac. J. Biol. Chem. 269, 23569–23574 (1994).

    CAS  PubMed  Google Scholar 

  25. Nisimoto, Y., Freeman, J. L. R., Motalebi, S. A., Hirshberg, M. & Lambeth, J. D. Rac binding to p67phox: Structural basis for interactions of the Rac1 effector region and insert region with components of the respiratory burst oxidase. J. Biol. Chem. 272, 18834–18841 (1997).

    Article  CAS  Google Scholar 

  26. Heyworth, P. G., Bohl, B. P., Bokoch, G. M. & Curnutte, J. T. Rac translocates independently of the neutrophil NADPH oxidase components p47-phox and p67-phox. Evidence for its interaction with flavocytochrome b558 . J. Biol. Chem. 269, 30749–30752 (1994).

    CAS  PubMed  Google Scholar 

  27. Freeman, J. L., Abo, A. & Lambeth, J. D. Rac “insert region” is a novel effector region that is implicated in the activation of NADPH oxidase, but not PAK65. J. Biol. Chem. 271, 19794–19801 (1996).

    Article  CAS  Google Scholar 

  28. Joneson, T. & Bar-Sagi, D. A Rac1 effector site controlling mitogenesis through superoxide production. J. Biol. Chem. 273, 17991–17994 (1998).

    Article  CAS  Google Scholar 

  29. Hiratsuka, T. New ribose-modified fluorescent analogs of adenine and guanine nucleotides available as substrates for various enzymes. Biochim. Biophys. Acta 742, 496–508 (1983).

    Article  CAS  Google Scholar 

  30. Han, C. H., Freeman, J. L., Lee, T., Motalebi, S. A. & Lambeth, J. D. Regulation of the neutrophil respiratory burst oxidase. Identification of an activation domain in p67(phox). J. Biol. Chem. 273, 16663–16668 (1998).

    Article  CAS  Google Scholar 

  31. Nisimoto, Y., Motalebi, S., Han, C.-H. & Lambeth, J. The p67phox activation domain regulates electron flow from NADPH to flavin in flavocytochrome b558 . J. Biol. Chem. 274, 22999–23005 (1999).

    Article  CAS  Google Scholar 

  32. Cross, A., Erickson, R. & Curnutte, J. Simultaneous presence of p47phox and flavocytochrome b−245 are required for the activation of NADPH oxidase by anionic amphiphiles. J. Biol. Chem. 274, 15519–15525 (1999).

    Article  CAS  Google Scholar 

  33. Guan, K. & Dixon, J. Eucaryotic protein expression in E. coli: An improved thrombin cleavage and purification procedure of fusion proteins with glutathione S-transferase. Anal. Biochem. 192, 262–267 (1991).

    Article  CAS  Google Scholar 

  34. Ahmed, S. et al. Cryptic Rac-binding and p21Cdc42HS/Rac-activated kinase phosphorylation sites of NADPH oxidase component p67phox. J. Biol. Chem. 273, 15693–15701 (1998).

    Article  CAS  Google Scholar 

  35. Segal, A. W. et al. Cytochrome b−245 is a flavocytochrome containing FAD and the NADPH-binding site of the microbicidal oxidase of phagocytes. Biochem. J. 284, 781–788 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. DerMardirossian for discussions and advice for cyt b purification; A. Cross for critical comments and technical advice; F. Wientjes for advice on p67phox mutant purification; and B. P. Bohl and J. Lu for technical assistance with protein preparation and molecular biology, respectively. Supported by USPHS grant M01 RR00833 to the General Clinical Research Center at The Scripps Research Institute; NIH grant HL48008 (to G. M. B.) and by a fellowship from the American Heart Association, Western States Affilliate (to B. D.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary M. Bokoch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diebold, B., Bokoch, G. Molecular basis for Rac2 regulation of phagocyte NADPH oxidase. Nat Immunol 2, 211–215 (2001). https://doi.org/10.1038/85259

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/85259

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing