Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Essay
  • Published:

The cysteinyl leukotrienes: Where do they come from? What are they? Where are they going?

Abstract

Cysteinyl leukotrienes are established mediators of bronchial asthma and have agonist roles analogous to those of histamine in allergic rhinitis. We now know that the substance originally termed slow-reacting substance of anaphylaxis was composed of three cysteinyl leukotrienes that act in the inflammatory response via receptors on smooth muscle and on bone marrow–derived inflammatory cells. K. Frank Austen describes the work culminating in the identification, biosynthesis and functional characterization of these moieties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Austen, K.F. & Brocklehurst, W.E. Anaphylaxis in chopped guinea pig lung. I. Effect of peptidase substrates and inhibitors. J. Exp. Med. 113, 521–539 (1961).

    Article  CAS  Google Scholar 

  2. Austen, K.F. & Brocklehurst, W.E. Anaphylaxis in chopped guinea pig lung. II. Enhancement of the anaphylactic release of histamine and slow reacting substance by certain dibasic aliphatic acids and inhibition by monobasic fatty acids. J. Exp. Med. 113, 541–557 (1961).

    Article  CAS  Google Scholar 

  3. Austen, K.F. & Brocklehurst, W.E. Anaphylaxis in chopped guinea pig lung. III. Effect of carbon monoxide, cyanide, salicylaldoxine, and ionic strength. J. Exp. Med. 114, 29–42 (1961).

    Article  CAS  Google Scholar 

  4. Stechschulte, D.J., Austen, K.F. & Bloch, K.J. Antibodies involved in antigen-induced release of slow reacting substance of anaphylaxis (SRS-A) in the guinea pig and rat. J. Exp. Med. 125, 127–147 (1967).

    Article  CAS  Google Scholar 

  5. Ishizaka, T., Ishizaka, K., Orange, R.P. & Austen, K.F. The capacity of human immunoglobulin E to mediate the release of histamine and slow reacting substance of anaphylaxis (SRS-A) from monkey lung. J. Immunol. 104, 335–343 (1970).

    CAS  PubMed  Google Scholar 

  6. Orange, R.P., Murphy, R.C., Karnovsky, M.L. & Austen, K.F. The physicochemical characteristics and purification of slow reacting substance of anaphylaxis. J. Immunol. 110, 760–770 (1973).

    CAS  PubMed  Google Scholar 

  7. Murphy, R.C., Hammarstrom, S. & Samuelsson, B. Leukotriene C: a slow-reacting substance from murine mastocytoma cells. Proc. Natl. Acad. Sci. USA 76, 4275–4279 (1979).

    Article  CAS  Google Scholar 

  8. Marfat, A. & Corey, E.J. Synthesis and structure elucidation of leukotrienes. in Advances in Prostaglandin, Thromboxane, and Leukotriene Research Vol. 14 (eds. Pike, J.E. & Morton, D.R. Jr.) 155–228 (Raven Press, New York, 1985).

    Google Scholar 

  9. Lewis, R.A. et al. Identification of the C(6)-S-conjugate of leukotriene A with cysteine as a naturally occurring slow reacting substance of anaphylaxis (SRS-A). Importance of the 11-cis-geometry for biological activity. Biochem. Biophys. Res. Commun. 96, 271–277 (1980).

    Article  CAS  Google Scholar 

  10. Lee, T.H., Austen, K.F., Corey, E.J. & Drazen, J.M. Leukotriene E4-induced airway hyperresponsiveness of guinea pig tracheal smooth muscle to histamine and evidence for three separate sulfidopeptide leukotriene receptors. Proc. Natl. Acad. Sci. USA 81, 4922–4925 (1984).

    Article  CAS  Google Scholar 

  11. Lynch, K.R. et al. Characterization of the human cysteinyl leukotriene CysLT1 receptor. Nature 399, 789–793 (1999).

    Article  CAS  Google Scholar 

  12. Soter, N.A., Lewis, R.A., Corey, E.J. & Austen, K.F. Local effects of synthetic leukotrienes (LTC4, LTD4, LTE4 and LTB4) in human skin. J. Invest. Dermatol. 80, 115–119 (1983).

    Article  CAS  Google Scholar 

  13. Weiss, J.W. et al. Bronchoconstrictor effects of leukotriene C in humans. Science 216, 196–198 (1982).

    Article  CAS  Google Scholar 

  14. Drazen, J.M., Israel, E. & O'Byrne, P. Treatment of asthma with drugs modifying the leukotriene pathway. N. Engl. J. Med. 340, 197–206 (1999).

    Article  CAS  Google Scholar 

  15. Bisgaard, H. Leukotriene modifiers in pediatric asthma management. Pediatrics 107, 381–390 (2001).

    Article  CAS  Google Scholar 

  16. Yoshimoto, T., Soberman, R.J., Spur, B. & Austen, K.F. Properties of highly purified leukotriene C4 synthase of guinea pig lung. J. Clin. Invest. 81, 866–871 (1988).

    Article  CAS  Google Scholar 

  17. Lam, B.K., Penrose, J.F., Freeman, G.J. & Austen, K.F. Expression cloning of a cDNA for human leukotriene C4 synthase, a novel integral membrane protein conjugating reduced glutathione to leukotriene A4 . Proc. Natl. Acad. Sci. USA 91, 7663–7667 (1994).

    Article  CAS  Google Scholar 

  18. Penrose, J.F. et al. Molecular cloning of the gene for human leukotriene C4 synthase: organization, nucleotide sequence, and chromosomal localization to 5q35. J. Biol. Chem. 271, 11356–11361 (1996).

    Article  CAS  Google Scholar 

  19. Hsieh, F.H. et al. T helper cell type 2 cytokines coordinately regulate immunoglobulin E-dependent cysteinyl leukotriene production by human cord blood-derived mast cells: profound induction of leukotriene C4 synthase expression by interleukin 4. J. Exp. Med. 193, 123–133 (2001).

    Article  CAS  Google Scholar 

  20. Schmidt-Krey, I. et al. Human leukotriene C4 synthase at 4.5 Å resolution in projection. Structure 12, 2009–2014 (2004).

    Article  CAS  Google Scholar 

  21. Ago, H. et al. Crystal structure of LTC4 synthase, the membrane protein for cysteinyl leukotriene biosynthesis. Nature 448, 609–612 (2007).

    Article  CAS  Google Scholar 

  22. Kanaoka, Y. et al. Attenuated zymosan-induced peritoneal vascular permeability and IgE-dependent passive cutaneous anaphylaxis in mice lacking leukotriene C4 synthase. J. Biol. Chem. 276, 22608–22613 (2001).

    Article  CAS  Google Scholar 

  23. Maekawa, A., Austen, K.F. & Kanaoka, Y. Targeted gene disruption reveals the role of cysteinyl leukotriene 1 receptor in the enhanced vascular permeability of mice undergoing acute inflammatory responses. J. Biol. Chem. 277, 20820–20824 (2002).

    Article  CAS  Google Scholar 

  24. Beller, T.C. et al. Targeted gene disruption reveals the role of the cysteinyl leukotriene 2 receptor in increased vascular permeability and in bleomycin-induced pulmonary fibrosis in mice. J. Biol. Chem. 279, 46129–46134 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Austen, K. The cysteinyl leukotrienes: Where do they come from? What are they? Where are they going?. Nat Immunol 9, 113–115 (2008). https://doi.org/10.1038/ni0208-113

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni0208-113

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing