Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Immunity to malaria: more questions than answers

Abstract

Malaria is one of the main health problems facing developing countries today. At present, preventative and treatment strategies are continuously hampered by the issues of the ever-emerging parasite resistance to newly introduced drugs, considerable costs and logistical problems. The main hope for changing this situation would be the development of effective malaria vaccines. An important part of this process is understanding the mechanisms of naturally acquired immunity to malaria. This review will highlight key aspects of immunity to malaria, about which surprisingly little is known and which will prove critical in the search for effective malaria vaccines.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The life cycle of the malaria parasite Plasmodium falciparum and acquisition of immunity in an area of endemic transmission.
Figure 2: Interactions of plasmodium with host PRRs.
Figure 3: Possible mechanisms of interference in B cell and T cell activation and the generation of immunological memory by plasmodium.

References

  1. 1

    Snow, R.W., Guerra, C.A., Noor, A.M., Myint, H.Y. & Hay, S.I. The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 434, 214–217 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2

    Snow, R.W., Trape, J.F. & Marsh, K. The past, present and future of childhood malaria mortality in Africa. Trends Parasitol. 17, 593–597 (2001).

    CAS  Google Scholar 

  3. 3

    Collins, W.E., Jeffery, G.M. & Roberts, J.M. A retrospective examination of anemia during infection of humans with Plasmodium vivax. Am. J. Trop. Med. Hyg. 68, 410–412 (2003).

    Google Scholar 

  4. 4

    Krause, D.R. et al. Characterization of the antibody response against Plasmodium falciparum erythrocyte membrane protein-1 in human volunteers. Infect. Immun. 75, 5967–5973 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Miller, J.M. et al. Malaria, intestinal parasites, and schistosomiasis among Barawan Somali refugees resettling to the United States: a strategy to reduce morbidity and decrease the risk of imported infections. Am. J. Trop. Med. Hyg. 62, 115–121 (2000).

    CAS  Google Scholar 

  6. 6

    Ciuca, M., Bailif, L. & Chelarescu-Vieru, M. Immunity in malaria. Trans. R. Soc. Trop. Med. Hyg. 27, 619–622 (1934).

    Google Scholar 

  7. 7

    Gupta, S., Snow, R.W., Donnelly, C.A., Marsh, K. & Newbold, C. Immunity to non-cerebral severe malaria is acquired after one or two infections. Nat. Med. 5, 340–343 (1999).

    CAS  Google Scholar 

  8. 8

    Owusu-Agyei, S. et al. Incidence of symptomatic and asymptomatic Plasmodium falciparum infection following curative therapy in adult residents of northern Ghana. Am. J. Trop. Med. Hyg. 65, 197–203 (2001).

    CAS  Google Scholar 

  9. 9

    Bruce-Chwatt, L.J. A longitudinal survey of natural malaria infection in a group of West African Adults. West Afr. Med. J. 12, 141–173 (1963).

    CAS  Google Scholar 

  10. 10

    Hoffman, S.L. et al. Protection of humans against malaria by immunization with radiation-attenuated Plasmodium falciparum sporozoites. J. Infect. Dis. 185, 1155–1164 (2002).

    Google Scholar 

  11. 11

    Alonso, P.L. et al. Duration of protection with RTS,S/AS02A malaria vaccine in prevention of Plasmodium falciparum disease in Mozambican children: single-blind extended follow-up of a randomised controlled trial. Lancet 366, 2012–2018 (2005).

    CAS  Google Scholar 

  12. 12

    Schofield, L. et al. γ Interferon, CD8+ T cells and antibodies required for immunity to malaria sporozoites. Nature 330, 664–666 (1987).

    CAS  Google Scholar 

  13. 13

    Langhorne, J., Cross, C., Seixas, E., Li, C. & von der Weid, T. A role for B cells in the development of T cell helper function in a malaria infection in mice. Proc. Natl. Acad. Sci. USA 95, 1730–1734 (1998).

    CAS  Google Scholar 

  14. 14

    Pombo, D.J. et al. Immunity to malaria after administration of ultra-low doses of red cells infected with Plasmodium falciparum. Lancet 360, 610–617 (2002).

    Google Scholar 

  15. 15

    Cohen, S., McGregor, I.A. & Carrington, S. Gamma-globulin and acquired immunity to human malaria. Nature 192, 733–737 (1961).

    CAS  Google Scholar 

  16. 16

    Sabchareon, A. et al. Parasitologic and clinical human response to immunoglobulin administration in falciparum malaria. Am. J. Trop. Med. Hyg. 45, 297–308 (1991).

    CAS  Google Scholar 

  17. 17

    Blackman, M.J., Heidrich, H.G., Donachie, S., McBride, J.S. & Holder, A.A. A single fragment of a malaria merozoite surface protein remains on the parasite during red cell invasion and is the target of invasion-inhibiting antibodies. J. Exp. Med. 172, 379–382 (1990).

    CAS  Google Scholar 

  18. 18

    Bouharoun-Tayoun, H., Oeuvray, C., Lunel, F. & Druilhe, P. Mechanisms underlying the monocyte-mediated antibody-dependent killing of Plasmodium falciparum asexual blood stages. J. Exp. Med. 182, 409–418 (1995).

    CAS  Google Scholar 

  19. 19

    Bull, P.C. et al. Parasite antigens on the infected red cell surface are targets for naturally acquired immunity to malaria. Nat. Med. 4, 358–360 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Jafarshad, A. et al. A novel antibody-dependent cellular cytotoxicity mechanism involved in defense against malaria requires costimulation of monocytes FcγRII and FcγRIII. J. Immunol. 178, 3099–3106 (2007).

    CAS  Google Scholar 

  21. 21

    McIntosh, R.S. et al. The importance of human FcγRI in mediating protection to malaria. PLoS Pathog. 3, e72 (2007).

    PubMed  PubMed Central  Google Scholar 

  22. 22

    Rotman, H.L., Daly, T.M., Clynes, R. & Long, C.A. Fc receptors are not required for antibody-mediated protection against lethal malaria challenge in a mouse model. J. Immunol. 161, 1908–1912 (1998).

    CAS  Google Scholar 

  23. 23

    Taylor, P.R., Seixas, E., Walport, M.J., Langhorne, J. & Botto, M. Complement contributes to protective immunity against reinfection by Plasmodium chabaudi chabaudi parasites. Infect. Immun. 69, 3853–3859 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Gray, J.C. et al. Profiling the antibody immune response against blood stage malaria vaccine candidates. Clin. Chem. 53, 1244–1253 (2007).

    CAS  Google Scholar 

  25. 25

    Vanderberg, J. et al. Assessment of antibody protection against malaria sporozoites must be done by mosquito injection of sporozoites. Am. J. Pathol. 171, 1405–1406 (2007).

    Google Scholar 

  26. 26

    Fonseca, L., Seixas, E., Butcher, G. & Langhorne, J. Cytokine responses of CD4+ T cells during a Plasmodium chabaudi chabaudi (ER) blood-stage infection in mice initiated by the natural route of infection. Malar. J. 6, 77–86 (2007).

    PubMed  PubMed Central  Google Scholar 

  27. 27

    Mueller, A.K., Labaied, M., Kappe, S.H. & Matuschewski, K. Genetically modified Plasmodium parasites as a protective experimental malaria vaccine. Nature 433, 164–167 (2005).

    CAS  Google Scholar 

  28. 28

    Marsh, K. et al. Indicators of life-threatening malaria in African children. N. Engl. J. Med. 332, 1399–1404 (1995).

    CAS  Google Scholar 

  29. 29

    Clark, I.A. Does endotoxin cause both the disease and parasite death in acute malaria and babesiosis? Lancet 312, 75–77 (1978).

    Google Scholar 

  30. 30

    Taverne, J., Tavernier, J., Fiers, W. & Playfair, J.H. Recombinant tumour necrosis factor inhibits malaria parasites in vivo but not in vitro. Immunol. Lett. 67, 1–4 (1987).

    CAS  Google Scholar 

  31. 31

    Kwiatkowski, D. Tumour necrosis factor, fever and fatality in falciparum malaria. Immunol. Lett. 25, 213–216 (1990).

    CAS  Google Scholar 

  32. 32

    Lyke, K.E. et al. Serum levels of the proinflammatory cytokines interleukin-1β (IL-1β), IL-6, IL-8, IL-10, tumor necrosis factor α, and IL-12(p70) in Malian children with severe Plasmodium falciparum malaria and matched uncomplicated malaria or healthy controls. Infect. Immun. 72, 5630–5637 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Ochiel, D.O. et al. Differential regulation of beta-chemokines in children with Plasmodium falciparum malaria. Infect. Immun. 73, 4190–4197 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Prakash, D. et al. Clusters of cytokines determine malaria severity in Plasmodium falciparum-infected patients from endemic areas of Central India. J. Infect. Dis. 194, 198–207 (2006).

    CAS  Google Scholar 

  35. 35

    Kurtzhals, J.A. et al. Low plasma concentrations of interleukin 10 in severe malarial anaemia compared with cerebral and uncomplicated malaria. Lancet 351, 1768–1772 (1998).

    CAS  Google Scholar 

  36. 36

    Awandare, G.A. et al. Increased levels of inflammatory mediators in children with severe Plasmodium falciparum malaria with respiratory distress. J. Infect. Dis. 194, 1438–1446 (2006).

    CAS  Google Scholar 

  37. 37

    John, C.C., Opika-Opoka, R., Byarugaba, J., Idro, R. & Boivin, M.J. Low levels of RANTES are associated with mortality in children with cerebral malaria. J. Infect. Dis. 194, 837–845 (2006).

    Google Scholar 

  38. 38

    Were, T. et al. Suppression of RANTES in children with Plasmodium falciparum malaria. Haematologica 91, 1396–1399 (2006).

    CAS  Google Scholar 

  39. 39

    Bayley, J.P., Ottenhoff, T.H. & Verweij, C.L. Is there a future for TNF promoter polymorphisms? Genes Immun. 5, 315–329 (2004).

    CAS  Google Scholar 

  40. 40

    Carpenter, D. et al. Immunogenetic control of antibody responsiveness in a malaria endemic area. Hum. Immunol. 68, 165–169 (2007).

    CAS  Google Scholar 

  41. 41

    Henri, S. et al. Description of three new polymorphisms in the intronic and 3′UTR regions of the human interferon gamma gene. Genes Immun. 3, 1–4 (2002).

    CAS  Google Scholar 

  42. 42

    Juliger, S., Bongartz, M., Luty, A.J., Kremsner, P.G. & Kun, J.F. Functional analysis of a promoter variant of the gene encoding the interferon-γ receptor chain I. Immunogenetics 54, 675–680 (2003).

    Google Scholar 

  43. 43

    Kurtzhals, J.A. et al. The cytokine balance in severe malarial anemia. J. Infect. Dis. 180, 1753–1755 (1999).

    CAS  Google Scholar 

  44. 44

    Li, C., Sanni, L.A., Omer, F., Riley, E. & Langhorne, J. Pathology and mortality of Plasmodium chabaudi chabaudi infection in IL-10-deficient mice is ameliorated by anti-TNF-α and exacerbated by anti-TGF-β antibodies. Infect. Immun. 71, 4850–4856 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Omer, F.M., de Souza, J.B. & Riley, E.M. Differential induction of TGF-beta regulates proinflammatory cytokine production and determines the outcome of lethal and nonlethal Plasmodium yoelii infections. J. Immunol. 171, 5430–5436 (2003).

    CAS  Google Scholar 

  46. 46

    Lamb, T.J., Brown, D.E., Potocnik, A.J. & Langhorne, J. Insights into the immunopathogenesis of malaria using mouse models. Expert Rev. Mol. Med. 8, 1–22 (2006).

    Google Scholar 

  47. 47

    Lamikanra, A.A. et al. Malarial anemia: of mice and men. Blood 110, 18–28 (2007).

    CAS  Google Scholar 

  48. 48

    Engwerda, C.R. et al. Locally up-regulated lymphotoxin α, not systemic tumor necrosis factor α, is the principle mediator of murine cerebral malaria. J. Exp. Med. 195, 1371–1377 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Stevenson, M.M. & Riley, E.M. Innate immunity to malaria. Natl. Rev. Immunol. 4, 169–180 (2004).

    CAS  Google Scholar 

  50. 50

    Engwerda, C.R. & Good, M.F. Interactions between malaria parasites and the host immune system. Curr. Opin. Immunol. 17, 381–387 (2005).

    CAS  Google Scholar 

  51. 51

    Li, C., Corraliza, I. & Langhorne, J. A defect in interleukin-10 leads to enhanced malarial disease in Plasmodium chabaudi chabaudi infection in mice. Infect. Immun. 67, 4435–4442 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Veldhoen, M. & Stockinger, B. TGFβ1, a “Jack of all trades”: the link with pro-inflammatory IL-17-producing T cells. Trends Immunol. 27, 358–361 (2006).

    CAS  Google Scholar 

  53. 53

    Baruch, D.I., Gormely, J.A., Ma, C., Howard, R.J. & Pasloske, B.L. Plasmodium falciparum erythrocyte membrane protein 1 is a parasitized erythrocyte receptor for adherence to CD36, thrombospondin, and intercellular adhesion molecule 1. Proc. Natl. Acad. Sci. USA 93, 3497–3502 (1996).

    CAS  Google Scholar 

  54. 54

    Hoebe, K. et al. CD36 is a sensor of diacylglycerides. Nature 433, 523–527 (2005).

    CAS  Google Scholar 

  55. 55

    Ndungu, F.M. et al. CD4 T cells from malaria-nonexposed individuals respond to the CD36-binding domain of Plasmodium falciparum erythrocyte membrane protein-1 via an MHC class II-TCR-independent pathway. J. Immunol. 176, 5504–5512 (2006).

    CAS  Google Scholar 

  56. 56

    Urban, B. et al. Plasmodium falciparum-infected erythrocytes modulate the maturation of dendritic cells. Nature 400, 73–77 (1999).

    CAS  Google Scholar 

  57. 57

    Krishnegowda, G. et al. Induction of proinflammatory responses in macrophages by the glycosylphosphatidylinositols of Plasmodium falciparum: cell signaling receptors, glycosylphosphatidylinositol (GPI) structural requirement, and regulation of GPI activity. J. Biol. Chem. 280, 8606–8616 (2005).

    CAS  Google Scholar 

  58. 58

    Nebl, T., De Veer, M.J. & Schofield, L. Stimulation of innate immune responses by malarial glycosylphosphatidylinositol via pattern recognition receptors. Parasitology 130 Suppl, S45–S62 (2005).

    CAS  Google Scholar 

  59. 59

    Coban, C. et al. Toll-like receptor 9 mediates innate immune activation by the malaria pigment hemozoin. J. Exp. Med. 201, 19–25 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    Parroche, P. et al. Malaria hemozoin is immunologically inert but radically enhances innate responses by presenting malaria DNA to Toll-like receptor 9. Proc. Natl. Acad. Sci. USA 104, 1919–1924 (2007).

    CAS  Google Scholar 

  61. 61

    Adachi, K. et al. Plasmodium berghei infection in mice induces liver injury by an IL-12- and Toll-like receptor/myeloid differentiation factor 88-dependent mechanism. J. Immunol. 167, 5928–5934 (2001).

    CAS  Google Scholar 

  62. 62

    Franklin, B.S. et al. MyD88-dependent activation of dendritic cells and CD4+ T lymphocytes mediates symptoms, but is not required for the immunological control of parasites during rodent malaria. Microbes Infect. 9, 881–890 (2007).

    CAS  Google Scholar 

  63. 63

    Togbe, D. et al. Murine cerebral malaria development is independent of Toll-like receptor signaling. Am. J. Pathol. 170, 1640–1648 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64

    Mockenhaupt, F.P. et al. Toll-like receptor (TLR) polymorphisms in African children: common TLR-4 variants predispose to severe malaria. J. Commun. Dis. 38, 230–245 (2006).

    CAS  Google Scholar 

  65. 65

    Mockenhaupt, F.P. et al. Common polymorphisms of Toll-like receptors 4 and 9 are associated with the clinical manifestation of malaria during pregnancy. J. Infect. Dis. 194, 184–188 (2006).

    CAS  Google Scholar 

  66. 66

    Khor, C.C. et al. A Mal functional variant is associated with protection against invasive pneumococcal disease, bacteremia, malaria and tuberculosis. Nat. Genet. 39, 523–528 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67

    Mackinnon, M.J., Gaffney, D.J. & Read, A.F. Virulence in rodent malaria: host genotype by parasite genotype interactions. Infect. Genet. Evol. 1, 287–296 (2002).

    CAS  Google Scholar 

  68. 68

    Wykes, M.N., Liu, X.Q., Jiang, S., Hirunpetcharat, C. & Good, M.F. Systemic tumor necrosis factor generated during lethal Plasmodium infections impairs dendritic cell function. J. Immunol. 179, 3982–3987 (2007).

    CAS  Google Scholar 

  69. 69

    Deloron, P. & Chougnet, C. Is immunity to malaria really short-lived? Parasitol. Today 8, 375–378 (1992).

    CAS  Google Scholar 

  70. 70

    Achtman, A.H., Bull, P.C., Stephens, R. & Langhorne, J. Longevity of the immune response and memory to blood-stage malaria infection. Curr. Top. Microbiol. Immunol. 297, 71–102 (2005).

    CAS  Google Scholar 

  71. 71

    Kinyanjui, S.M., Conway, D.J., Lanar, D.E. & Marsh, K. IgG antibody responses to Plasmodium falciparum merozoite antigens in Kenyan children have a short half-life. Malar. J. 6, 82–90 (2007).

    PubMed  PubMed Central  Google Scholar 

  72. 72

    Migot, F. et al. Human immune responses to the Plasmodium falciparum ring-infected erythrocyte surface antigen (Pf155/RESA) after a decrease in malaria transmission in Madagascar. Am. J. Trop. Med. Hyg. 48, 432–439 (1993).

    CAS  Google Scholar 

  73. 73

    Dorfman, J.R. et al. B cell memory to 3 Plasmodium falciparum blood-stage antigens in a malaria-endemic area. J. Infect. Dis. 191, 1623–1630 (2005).

    CAS  Google Scholar 

  74. 74

    Sano, G. et al. Swift development of protective effector functions in naive CD8+ T cells against malaria liver stages. J. Exp. Med. 194, 173–180 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75

    Stephens, R. et al. Malaria-specific transgenic CD4+ T cells protect immunodeficient mice from lethal infection and demonstrate requirement for a protective threshold of antibody production for parasite clearance. Blood 106, 1676–1684 (2005).

    CAS  Google Scholar 

  76. 76

    Chakravarty, S. et al. CD8+ T lymphocytes protective against malaria liver stages are primed in skin-draining lymph nodes. Nat. Med. 13, 1035–1041 (2007).

    CAS  Google Scholar 

  77. 77

    Carvalho, L.H. et al. IL-4-secreting CD4+ T cells are crucial to the development of CD8+ T-cell responses against malaria liver stages. Nat. Med. 8, 166–170 (2002).

    CAS  Google Scholar 

  78. 78

    Scheller, L.F. & Azad, A.F. Maintenance of protective immunity against malaria by persistent hepatic parasites derived from irradiated sporozoites. Proc. Natl. Acad. Sci. USA 92, 4066–4068 (1995).

    CAS  Google Scholar 

  79. 79

    Berenzon, D. et al. Protracted protection to Plasmodium berghei malaria is linked to functionally and phenotypically heterogeneous liver memory CD8+ T cells. J. Immunol. 171, 2024–2034 (2003).

    CAS  Google Scholar 

  80. 80

    Morrot, A., Hafalla, J.C., Cockburn, I.A., Carvalho, L.H. & Zavala, F. IL-4 receptor expression on CD8+ T cells is required for the development of protective memory responses against liver stages of malaria parasites. J. Exp. Med. 202, 551–560 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81

    Mount, A.M. et al. Impairment of humoral immunity to Plasmodium falciparum malaria in pregnancy by HIV infection. Lancet 363, 1860–1867 (2004).

    Google Scholar 

  82. 82

    Seixas, E., Cross, C., Quin, S. & Langhorne, J. Direct activation of dendritic cells by the malaria parasite, Plasmodium chabaudi chabaudi. Eur. J. Immunol. 31, 2970–2978 (2001).

    CAS  Google Scholar 

  83. 83

    Sponaas, A.M. et al. Malaria infection changes the ability of splenic dendritic cell populations to stimulate antigen-specific T cells. J. Exp. Med. 203, 1427–1433 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84

    Elliott, S.R. et al. Inhibition of dendritic cell maturation by malaria is dose dependent and does not require Plasmodium falciparum erythrocyte membrane protein 1. Infect. Immun. 75, 3621–3632 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85

    Ocana-Morgner, C., Mota, M. & Rodriguez, A. Malaria blood stage suppression of liver stage immunity by dendritic cells. J. Exp. Med. 197, 143–151 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86

    Urban, B. et al. Peripheral blood dendritic cells in children with acute Plasmoium falciparum malaria. Blood 98, 2859–2861 (2001).

    CAS  Google Scholar 

  87. 87

    Xu, H. et al. The mechanism and significance of deletion of parasite-specific CD4+ T cells in malaria infection. J. Exp. Med. 195, 881–892 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88

    Foulds, K.E., Wu, C.Y. & Seder, R.A. Th1 memory: implications for vaccine development. Immunol. Rev. 211, 58–66 (2006).

    CAS  Google Scholar 

  89. 89

    Darrah, P.A. et al. Multifunctional TH1 cells define a correlate of vaccine-mediated protection against Leishmania major. Nat. Med. 13, 843–850 (2007).

    CAS  Google Scholar 

  90. 90

    Seder, R.A. & Ahmed, R. Similarities and differences in CD4+ and CD8+ effector and memory T cell generation. Nat. Immunol. 4, 835–842 (2003).

    CAS  Google Scholar 

  91. 91

    Day, C.L. et al. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 443, 350–354 (2006).

    CAS  Google Scholar 

  92. 92

    Radziewicz, H. et al. Liver-infiltrating lymphocytes in chronic human hepatitis C virus infection display an exhausted phenotype with high levels of PD-1 and low levels of CD127 expression. J. Virol. 81, 2545–2553 (2007).

    CAS  Google Scholar 

  93. 93

    Wykes, M.N., Zhou, Y.H., Liu, X.Q. & Good, M.F. Plasmodium yoelii can ablate vaccine-induced long-term protection in mice. J. Immunol. 175, 2510–2516 (2005).

    CAS  Google Scholar 

  94. 94

    Xiang, Z. et al. FcγRIIb controls bone marrow plasma cell persistence and apoptosis. Nat. Immunol. 8, 419–429 (2007).

    CAS  Google Scholar 

  95. 95

    Moran, M. et al. The Malaria Product Pipeline: Planning For The Future (The George Institute for International Health, Sidney, Australia, 2007).

    Google Scholar 

  96. 96

    Marsh, K. & Kinyanjui, S. Immune effector mechanisms in malaria. Parasite Immunol. 28, 51–60 (2006).

    CAS  Google Scholar 

  97. 97

    Yarovinsky, F. et al. TLR11 activation of dendritic cells by a protozoan profilin-like protein. Science 308, 1626–1629 (2005).

    CAS  Google Scholar 

  98. 98

    Takaoka, A. et al. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 448, 501–505 (2007).

    CAS  Google Scholar 

  99. 99

    O'Neill, L.A. & Bowie, A.G. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Natl. Rev. Immunol. 7, 353–364 (2007).

    CAS  Google Scholar 

  100. 100

    Imler, J.L. & Hoffmann, J.A. Toll signaling: the TIReless quest for specificity. Nat. Immunol. 4, 105–106 (2003).

    CAS  Google Scholar 

  101. 101

    West, A.P., Koblansky, A.A. & Ghosh, S. Recognition and signaling by Toll-like receptors. Annu. Rev. Cell Dev. Biol. 22, 409–437 (2006).

    CAS  Google Scholar 

  102. 102

    Yamamoto, M. et al. Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. Nature 420, 324–329 (2002).

    CAS  Google Scholar 

  103. 103

    Skorokhod, O.A., Alessio, M., Mordmuller, B., Arese, P. & Schwarzer, E. Hemozoin (malarial pigment) inhibits differentiation and maturation of human monocyte-derived dendritic cells: a peroxisome proliferator-activated receptor-gamma-mediated effect. J. Immunol. 173, 4066–4074 (2004).

    CAS  Google Scholar 

  104. 104

    Urban, B.C., Willcox, N. & Roberts, D.J. A role for CD36 in the regulation of dendritic cell function. Proc. Natl. Acad. Sci. USA 98, 8750–8755 (2001).

    CAS  Google Scholar 

  105. 105

    Taylor, A., Verhagen, J., Blaser, K., Akdis, M. & Akdis, C.A. Mechanisms of immune suppression by interleukin-10 and transforming growth factor-β: the role of T regulatory cells. Immunology 117, 433–442 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank D. Brown and G. Kassiotis for discussions and critical review of the manuscript. Supported by the Medical Research Council (UK), the Wellcome Trust and the BioMalPar European Network of Excellence (EU: LSHP-CT-2004-503578).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jean Langhorne.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Langhorne, J., Ndungu, F., Sponaas, AM. et al. Immunity to malaria: more questions than answers. Nat Immunol 9, 725–732 (2008). https://doi.org/10.1038/ni.f.205

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing