Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Germinal-center development of memory B cells driven by IL-9 from follicular helper T cells

Abstract

Germinal centers (GCs) support high-affinity, long-lived humoral immunity. How memory B cells develop in GCs is not clear. Through the use of a cell-cycle-reporting system, we identified GC-derived memory precursor cells (GC-MP cells) that had quit cycling and reached G0 phase while in the GC, exhibited memory-associated phenotypes with signs of affinity maturation and localized toward the GC border. After being transferred into adoptive hosts, GC-MP cells reconstituted a secondary response like genuine memory B cells. GC-MP cells expressed the interleukin 9 (IL-9) receptor and responded to IL-9. Acute treatment with IL-9 or antibody to IL-9 accelerated or retarded the positioning of GC-MP cells toward the GC edge and exit from the GC, and enhanced or inhibited the development of memory B cells, which required B cell–intrinsic responsiveness to IL-9. Follicular helper T cells (TFH cells) produced IL-9, and deletion of IL-9 from T cells or, more specifically, from GC TFH cells led to impaired memory formation of B cells. Therefore, the GC development of memory B cells is promoted by TFH cell–derived IL-9.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of G0-phase GC B cells that have undergone selection.
Figure 2: Post-selection G0 GC B cells are poised to leave the GC.
Figure 3: The exiting transitional mKO2hi GC B cells are precursors of GC memory cells.
Figure 4: IL-9 promotes the GC-to-memory transition.
Figure 5: IL-9 promotes the formation of memory B cells.
Figure 6: Intrinsic IL-9 responsiveness is required for the formation of memory B cells.
Figure 7: IL-9 produced by T cells is important for memory formation.
Figure 8: GC TFH cell–derived IL-9 promotes memory formation.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Coico, R.F., Bhogal, B.S. & Thorbecke, G.J. Relationship of germinal centers in lymphoid tissue to immunologic memory. VI. Transfer of B cell memory with lymph node cells fractionated according to their receptors for peanut agglutinin. J. Immunol. 131, 2254–2257 (1983).

    CAS  PubMed  Google Scholar 

  2. Berek, C., Berger, A. & Apel, M. Maturation of the immune response in germinal centers. Cell 67, 1121–1129 (1991).

    Article  CAS  PubMed  Google Scholar 

  3. Jacob, J., Kelsoe, G., Rajewsky, K. & Weiss, U. Intraclonal generation of antibody mutants in germinal centres. Nature 354, 389–392 (1991).

    Article  CAS  PubMed  Google Scholar 

  4. MacLennan, I.C. Germinal centers. Annu. Rev. Immunol. 12, 117–139 (1994).

    CAS  PubMed  Google Scholar 

  5. Victora, G.D. & Nussenzweig, M.C. Germinal centers. Annu. Rev. Immunol. 30, 429–457 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Victora, G.D. et al. Germinal center dynamics revealed by multiphoton microscopy with a photoactivatable fluorescent reporter. Cell 143, 592–605 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Gitlin, A.D., Shulman, Z. & Nussenzweig, M.C. Clonal selection in the germinal centre by regulated proliferation and hypermutation. Nature 509, 637–640 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. De Silva, N.S. & Klein, U. Dynamics of B cells in germinal centres. Nat. Rev. Immunol. 15, 137–148 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ozaki, K. et al. A critical role for IL-21 in regulating immunoglobulin production. Science 298, 1630–1634 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Ettinger, R. et al. IL-21 induces differentiation of human naive and memory B cells into antibody-secreting plasma cells. J. Immunol. 175, 7867–7879 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Bryant, V.L. et al. Cytokine-mediated regulation of human B cell differentiation into Ig-secreting cells: predominant role of IL-21 produced by CXCR5+ T follicular helper cells. J. Immunol. 179, 8180–8190 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Angelin-Duclos, C., Cattoretti, G., Lin, K.I. & Calame, K. Commitment of B lymphocytes to a plasma cell fate is associated with Blimp-1 expression in vivo. J. Immunol. 165, 5462–5471 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Shapiro-Shelef, M., Lin, K.I., Savitsky, D., Liao, J. & Calame, K. Blimp-1 is required for maintenance of long-lived plasma cells in the bone marrow. J. Exp. Med. 202, 1471–1476 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shlomchik, M.J. & Weisel, F. Germinal center selection and the development of memory B and plasma cells. Immunol. Rev. 247, 52–63 (2012).

    Article  PubMed  Google Scholar 

  15. Tarlinton, D. & Good-Jacobson, K. Diversity among memory B cells: origin, consequences, and utility. Science 341, 1205–1211 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Sakaue-Sawano, A. et al. Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell 132, 487–498 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Szymczak, A.L. et al. Correction of multi-gene deficiency in vivo using a single 'self-cleaving' 2A peptide-based retroviral vector. Nat. Biotechnol. 22, 589–594 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Gerdes, J. et al. Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J. Immunol. 133, 1710–1715 (1984).

    CAS  PubMed  Google Scholar 

  19. Lu, P., Shih, C. & Qi, H. Ephrin B1-mediated repulsion and signaling control germinal center T cell territoriality and function. Science 356, eaai9264 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Laidlaw, B.J. et al. The Eph-related tyrosine kinase ligand Ephrin-B1 marks germinal center and memory precursor B cells. J. Exp. Med. 214, 639–649 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Cyster, J.G. Chemokines, sphingosine-1-phosphate, and cell migration in secondary lymphoid organs. Annu. Rev. Immunol. 23, 127–159 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Pereira, J.P., Kelly, L.M., Xu, Y. & Cyster, J.G. EBI2 mediates B cell segregation between the outer and centre follicle. Nature 460, 1122–1126 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gatto, D., Paus, D., Basten, A., Mackay, C.R. & Brink, R. Guidance of B cells by the orphan G protein-coupled receptor EBI2 shapes humoral immune responses. Immunity 31, 259–269 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Green, J.A. et al. The sphingosine 1-phosphate receptor S1P maintains the homeostasis of germinal center B cells and promotes niche confinement. Nat. Immunol. 12, 672–680 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Niu, H., Ye, B.H. & Dalla-Favera, R. Antigen receptor signaling induces MAP kinase-mediated phosphorylation and degradation of the BCL-6 transcription factor. Genes Dev. 12, 1953–1961 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Saito, M. et al. A signaling pathway mediating downregulation of BCL6 in germinal center B cells is blocked by BCL6 gene alterations in B cell lymphoma. Cancer Cell 12, 280–292 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Duan, S. et al. FBXO11 targets BCL6 for degradation and is inactivated in diffuse large B-cell lymphomas. Nature 481, 90–93 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bhattacharya, D. et al. Transcriptional profiling of antigen-dependent murine B cell differentiation and memory formation. J. Immunol. 179, 6808–6819 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Zuccarino-Catania, G.V. et al. CD80 and PD-L2 define functionally distinct memory B cell subsets that are independent of antibody isotype. Nat. Immunol. 15, 631–637 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shinnakasu, R. et al. Regulated selection of germinal-center cells into the memory B cell compartment. Nat. Immunol. 17, 861–869 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Bertoli, C., Skotheim, J.M. & de Bruin, R.A. Control of cell cycle transcription during G1 and S phases. Nat. Rev. Mol. Cell Biol. 14, 518–528 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mootha, V.K. et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267–273 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Lefebvre, C. et al. A human B-cell interactome identifies MYB and FOXM1 as master regulators of proliferation in germinal centers. Mol. Syst. Biol. 6, 377 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Demoulin, J.B. et al. A single tyrosine of the interleukin-9 (IL-9) receptor is required for STAT activation, antiapoptotic activity, and growth regulation by IL-9. Mol. Cell. Biol. 16, 4710–4716 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Demoulin, J.B., Van Roost, E., Stevens, M., Groner, B. & Renauld, J.C. Distinct roles for STAT1, STAT3, and STAT5 in differentiation gene induction and apoptosis inhibition by interleukin-9. J. Biol. Chem. 274, 25855–25861 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Zotos, D. et al. IL-21 regulates germinal center B cell differentiation and proliferation through a B cell-intrinsic mechanism. J. Exp. Med. 207, 365–378 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Qi, H., Cannons, J.L., Klauschen, F., Schwartzberg, P.L. & Germain, R.N. SAP-controlled T-B cell interactions underlie germinal centre formation. Nature 455, 764–769 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yusuf, I. et al. Germinal center T follicular helper cell IL-4 production is dependent on signaling lymphocytic activation molecule receptor (CD150). J. Immunol. 185, 190–202 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Deenick, E.K. et al. Follicular helper T cell differentiation requires continuous antigen presentation that is independent of unique B cell signaling. Immunity 33, 241–253 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Linterman, M.A. et al. IL-21 acts directly on B cells to regulate Bcl-6 expression and germinal center responses. J. Exp. Med. 207, 353–363 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fawaz, L.M. et al. Expression of IL-9 receptor alpha chain on human germinal center B cells modulates IgE secretion. J. Allergy Clin. Immunol. 120, 1208–1215 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Avalle, L., Pensa, S., Regis, G., Novelli, F. & Poli, V. STAT1 and STAT3 in tumorigenesis: A matter of balance. JAK-STAT 1, 65–72 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lüthje, K. et al. The development and fate of follicular helper T cells defined by an IL-21 reporter mouse. Nat. Immunol. 13, 491–498 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Weisel, F.J., Zuccarino-Catania, G.V., Chikina, M. & Shlomchik, M.J. A temporal switch in the germinal center determines differential output of memory B and plasma cells. Immunity 44, 116–130 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Czar, M.J. et al. Altered lymphocyte responses and cytokine production in mice deficient in the X-linked lymphoproliferative disease gene SH2D1A/DSHP/SAP. Proc. Natl. Acad. Sci. USA 98, 7449–7454 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shih, T.A., Roederer, M. & Nussenzweig, M.C. Role of antigen receptor affinity in T cell-independent antibody responses in vivo. Nat. Immunol. 3, 399–406 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Grohmann, U. et al. IL-9 protects mice from Gram-negative bacterial shock: suppression of TNF-alpha, IL-12, and IFN-γ, and induction of IL-10. J. Immunol. 164, 4197–4203 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Veldhoen, M. et al. Transforming growth factor-beta 'reprograms' the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat. Immunol. 9, 1341–1346 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Dardalhon, V. et al. IL-4 inhibits TGF-β -induced Foxp3+ T cells and, together with TGF-β, generates IL-9+IL-10+Foxp3 effector T cells. Nat. Immunol. 9, 1347–1355 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gomez-Rodriguez, J. et al. Itk is required for Th9 differentiation via TCR-mediated induction of IL-2 and IRF4. Nat. Commun. 7, 10857 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Qi, H., Egen, J.G., Huang, A.Y. & Germain, R.N. Extrafollicular activation of lymph node B cells by antigen-bearing dendritic cells. Science 312, 1672–1676 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Xu, H. et al. Follicular T-helper cell recruitment governed by bystander B cells and ICOS-driven motility. Nature 496, 523–527 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Liu, D. et al. T-B-cell entanglement and ICOSL-driven feed-forward regulation of germinal centre reaction. Nature 517, 214–218 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Lefebvre, C., Lim, W.K., Basso, K., Favera, R.D. & Califano, A. A context-specific network of protein-DNA and protein-protein interactions reveals new regulatory motifs in human B cells. In: Systems Biology and Computational Proteomics: Joint RECOMB 2006 Satellite Workshops on Systems Biology and on Computational Proteomics, San Diego, CA, USA, December 1–3, 2006, Revised Selected Papers (eds. Ideker, T. & Bafna, V.) 42–56 (Springer Berlin Heidelbergg, 2007).

Download references

Acknowledgements

We thank P. Schwartzberg (US National Institutes of Health) for the SAP-knockout mice; M. Nussenzweig (Rockefeller University) for the B1-8hi knock-in mice; and S. Crotty (La Jolla Institute of Allergy and Immunology) and Y.-C. Liu (Tsinghua University) for the MSCV-LMP vector. Supported by the Ministry of Science and Technology “973” program (2014CB542501), National Natural Science Foundation of China (81330070, 81425011, 81621002), the Tsinghua-Peking Center for Life Sciences and a Bayer endowed chair professorship (H.Q.).

Author information

Authors and Affiliations

Authors

Contributions

Y.W., J.S. and J.Y. contributed to the study design and conducted the majority of the experiments; Z.X. conducted informatics analyses under the supervision of X.Y., with contributions from J.S., S.H. and T.M.; X.H., Y.M. and L.Z. made the transgenic and knockout mice; P.L. and W.L. provided technical assistance; H.Q. designed and supervised the study and wrote the paper; and all authors contributed to data interpretation.

Corresponding author

Correspondence to Hai Qi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Shi, J., Yan, J. et al. Germinal-center development of memory B cells driven by IL-9 from follicular helper T cells. Nat Immunol 18, 921–930 (2017). https://doi.org/10.1038/ni.3788

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.3788

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing