Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Regulation of inflammation by microbiota interactions with the host

Abstract

The study of the intestinal microbiota has begun to shift from cataloging individual members of the commensal community to understanding their contributions to the physiology of the host organism in health and disease. Here, we review the effects of the microbiome on innate and adaptive immunological players from epithelial cells and antigen-presenting cells to innate lymphoid cells and regulatory T cells. We discuss recent studies that have identified diverse microbiota-derived bioactive molecules and their effects on inflammation within the intestine and distally at sites as anatomically remote as the brain. Finally, we highlight new insights into how the microbiome influences the host response to infection, vaccination and cancer, as well as susceptibility to autoimmune and neurodegenerative disorders.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Dietary fiber and SCFAs in intestinal homeostasis.
Figure 2: Examples of mechanisms mediating host–microbiota interactions.
Figure 3: Associations between the intestinal microbiota and autoimmune disorders.
Figure 4: Links between the intestinal microbiota and neuroinflammation.

References

  1. 1

    Sender, R., Fuchs, S. & Milo, R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell 164, 337–340 (2016).

    CAS  Google Scholar 

  2. 2

    Gilbert, J.A. et al. Microbiome-wide association studies link dynamic microbial consortia to disease. Nature 535, 94–103 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. 3

    Honda, K. & Littman, D.R. The microbiota in adaptive immune homeostasis and disease. Nature 535, 75–84 (2016).

    Article  CAS  Google Scholar 

  4. 4

    Sonnenburg, J.L. & Bäckhed, F. Diet-microbiota interactions as moderators of human metabolism. Nature 535, 56–64 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Bittinger, K. et al. Improved characterization of medically relevant fungi in the human respiratory tract using next-generation sequencing. Genome Biol. 15, 487 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6

    Iliev, I.D. et al. Interactions between commensal fungi and the C-type lectin receptor dectin-1 influence colitis. Science 336, 1314–1317 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Iliev, I.D. & Leonardi, I. Fungal dysbiosis: immunity and interactions at mucosal barriers. Nat. Rev. Immunol. http://dx.doi.org/10.1038/nri.2017.55 (2017).

  8. 8

    Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Human Microbiome Project Consortium. A framework for human microbiome research. Nature 486, 215–221 (2012).

  10. 10

    Browne, H.P. et al. Culturing of 'unculturable' human microbiota reveals novel taxa and extensive sporulation. Nature 533, 543–546 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Schloss, P.D., Iverson, K.D., Petrosino, J.F. & Schloss, S.J. The dynamics of a family's gut microbiota reveal variations on a theme. Microbiome 2, 25 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  12. 12

    Yissachar, N. et al. An intestinal organ culture system uncovers a role for the nervous system in microbe-immune crosstalk. Cell 168, 1135–1148.e12 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Longman, R.S. & Littman, D.R. The functional impact of the intestinal microbiome on mucosal immunity and systemic autoimmunity. Curr. Opin. Rheumatol. 27, 381–387 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Roy, S. & Trinchieri, G. Microbiota: a key orchestrator of cancer therapy. Nat. Rev. Cancer 17, 271–285 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. 15

    Smith, P.A. The tantalizing links between gut microbes and the brain. Nature 526, 312–314 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. 16

    Hooper, L.V., Littman, D.R. & Macpherson, A.J. Interactions between the microbiota and the immune system. Science 336, 1268–1273 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Peterson, L.W. & Artis, D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat. Rev. Immunol. 14, 141–153 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. 18

    Blander, J.M. Death in the intestinal epithelium-basic biology and implications for inflammatory bowel disease. FEBS J. 283, 2720–2730 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Cummings, R.J. et al. Different tissue phagocytes sample apoptotic cells to direct distinct homeostasis programs. Nature 539, 565–569 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Donaldson, G.P., Lee, S.M. & Mazmanian, S.K. Gut biogeography of the bacterial microbiota. Nat. Rev. Microbiol. 14, 20–32 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. 21

    Chu, H. et al. Gene-microbiota interactions contribute to the pathogenesis of inflammatory bowel disease. Science 352, 1116–1120 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Bunker, J.J. et al. Innate and adaptive humoral responses coat distinct commensal bacteria with immunoglobulin A. Immunity 43, 541–553 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Leone, V. et al. Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism. Cell Host Microbe 17, 681–689 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Thaiss, C.A. et al. Microbiota diurnal rhythmicity programs host transcriptome oscillations. Cell 167, 1495–1510.e12 (2016).

    Article  CAS  Google Scholar 

  25. 25

    Thaiss, C.A., Zeevi, D., Levy, M., Segal, E. & Elinav, E. A day in the life of the meta-organism: diurnal rhythms of the intestinal microbiome and its host. Gut Microbes 6, 137–142 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Kau, A.L. et al. Functional characterization of IgA-targeted bacterial taxa from undernourished Malawian children that produce diet-dependent enteropathy. Sci. Transl. Med. 7, 276ra24 (2015)This defining study used Bug-FACS to identify IgA-reactive microbiota from mice colonized with human microbiota from twins discordant for malnutrition. This study illustrates the utility of Bug-FACS in identifying immunologically relevant microbiota in human disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Palm, N.W. et al. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell 158, 1000–1010 (2014). This study, along with ref. 22 , describes the method of IgA-seq to sort and sequence IgA-coated microbiota. Culture libraries created from IgA-sorted microbiota were used to evaluate the effects of these microbiota in vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Planer, J.D. et al. Development of the gut microbiota and mucosal IgA responses in twins and gnotobiotic mice. Nature 534, 263–266 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Moor, K. et al. High-avidity IgA protects the intestine by enchaining growing bacteria. Nature 544, 498–502 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. 30

    Geva-Zatorsky, N. et al. Mining the human gut microbiota for immunomodulatory organisms. Cell 168, 928–943.e911 (2017). In this study, a systematic approach using both immunological phenotyping and transcriptional profiling was used to define the effects of 53 human-gut commensal bacteria on a wide range of gut immune responses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Viladomiu, M. et al. IgA-coated E. coli enriched in Crohn's disease spondyloarthritis promote TH17-dependent inflammation. Sci. Transl. Med. 9, eaaf9655 (2017). Using IgA-seq to provide insight into microbiota that might have systemic inflammatory effects, this study analyzed samples from people with Crohn's disease–associated spondyloarthritis and has identified the ability of adherent-invasive E. coli to induce inflammatory T H 17 cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Tan, T.G. et al. Identifying species of symbiont bacteria from the human gut that, alone, can induce intestinal Th17 cells in mice. Proc. Natl. Acad. Sci. USA 113, E8141–E8150 (2016). This study used a gnotobiotic mouse platform to screen 39 human-gut symbionts and has identified the ubiquitous symbiont Bifidobacteria adolescentis as a notable inducer of T H 17 cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Atarashi, K. et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 500, 232–236 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Fung, T.C. et al. Lymphoid-tissue-resident commensal bacteria promote members of the IL-10 cytokine family to establish mutualism. Immunity 44, 634–646 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Kunisawa, J. & Kiyono, H. Alcaligenes is commensal bacteria habituating in the gut-associated lymphoid tissue for the regulation of intestinal IgA responses. Front. Immunol. 3, 65 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  36. 36

    Obata, T. et al. Indigenous opportunistic bacteria inhabit mammalian gut-associated lymphoid tissues and share a mucosal antibody-mediated symbiosis. Proc. Natl. Acad. Sci. USA 107, 7419–7424 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  37. 37

    Sonnenberg, G.F. & Artis, D. Innate lymphoid cells in the initiation, regulation and resolution of inflammation. Nat. Med. 21, 698–708 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Sato, S. et al. Transcription factor Spi-B-dependent and -independent pathways for the development of Peyer's patch M cells. Mucosal Immunol. 6, 838–846 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Satoh-Takayama, N. et al. The chemokine receptor CXCR6 controls the functional topography of interleukin-22 producing intestinal innate lymphoid cells. Immunity 41, 776–788 (2014).

    CAS  Article  Google Scholar 

  40. 40

    Stockinger, B., Di Meglio, P., Gialitakis, M. & Duarte, J.H. The aryl hydrocarbon receptor: multitasking in the immune system. Annu. Rev. Immunol. 32, 403–432 (2014).

    Article  CAS  Google Scholar 

  41. 41

    Lindemans, C.A. et al. Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. Nature 528, 560–564 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Hallen-Adams, H.E. & Suhr, M.J. Fungi in the healthy human gastrointestinal tract. Virulence 8, 352–358 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Liguori, G. et al. Fungal dysbiosis in mucosa-associated microbiota of Crohn's disease patients. J. Crohns Colitis 10, 296–305 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  44. 44

    Suhr, M.J., Banjara, N. & Hallen-Adams, H.E. Sequence-based methods for detecting and evaluating the human gut mycobiome. Lett. Appl. Microbiol. 62, 209–215 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Hoarau, G. et al. Bacteriome and mycobiome interactions underscore microbial dysbiosis in familial Crohn's disease. MBio 7, e01250–16 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Li, Q. et al. Dysbiosis of gut fungal microbiota is associated with mucosal inflammation in Crohn's disease. J. Clin. Gastroenterol. 48, 513–523 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Sokol, H. et al. Fungal microbiota dysbiosis in IBD. Gut 66, 1039–1048 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Lamas, B. et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat. Med. 22, 598–605 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Tang, C. et al. Inhibition of Dectin-1 signaling ameliorates colitis by inducing Lactobacillus-mediated regulatory T cell expansion in the intestine. Cell Host Microbe 18, 183–197 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Lewis, J.D. et al. Inflammation, antibiotics, and diet as environmental stressors of the gut microbiome in pediatric Crohn's disease. Cell Host Microbe 18, 489–500 (2015). This study shows that inflammation, antibiotics and diet independently affect the gut microbiota in people with Crohn's disease and provides evidence of an association between antibiotic use and fungal overgrowth.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Wheeler, M.L. et al. Immunological consequences of intestinal fungal dysbiosis. Cell Host Microbe 19, 865–873 (2016). This study shows that targeted fungal-community dysbiosis has local and systemic effects on immunity and inflammation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Fan, D. et al. Activation of HIF-1α and LL-37 by commensal bacteria inhibits Candida albicans colonization. Nat. Med. 21, 808–814 (2015). This study shows that commensal bacteria can promote resistance to C. albicans colonization by increasing the H1F-1α-mediated expression of the antimicrobial peptide LL-37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Chudnovskiy, A. et al. Host-protozoan interactions protect from mucosal infections through activation of the inflammasome. Cell 167, 444–456.e14 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Escalante, N.K. et al. The common mouse protozoa Tritrichomonas muris alters mucosal T cell homeostasis and colitis susceptibility. J. Exp. Med. 213, 2841–2850 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Kernbauer, E., Ding, Y. & Cadwell, K. An enteric virus can replace the beneficial function of commensal bacteria. Nature 516, 94–98 (2014). This paper demonstrated that colonization with a single symbiotic eukaryotic virus can reverse some of the physiological and immunological defects observed in germ-free or antibiotic-exposed mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Kuss, S.K. et al. Intestinal microbiota promote enteric virus replication and systemic pathogenesis. Science 334, 249–252 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Kane, M. et al. Successful transmission of a retrovirus depends on the commensal microbiota. Science 334, 245–249 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Monaco, C.L. et al. Altered virome and bacterial microbiome in human immunodeficiency virus-associated acquired immunodeficiency syndrome. Cell Host Microbe 19, 311–322 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Norman, J.M. et al. Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell 160, 447–460 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    Handley, S.A. et al. Pathogenic simian immunodeficiency virus infection is associated with expansion of the enteric virome. Cell 151, 253–266 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. 61

    Ramanan, D. et al. Helminth infection promotes colonization resistance via type 2 immunity. Science 352, 608–612 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. 62

    Osborne, L.C. et al. Coinfection. Virus-helminth coinfection reveals a microbiota-independent mechanism of immunomodulation. Science 345, 578–582 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Reese, T.A. et al. Helminth infection reactivates latent γ-herpesvirus via cytokine competition at a viral promoter. Science 345, 573–577 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. 64

    Wu, G.D. et al. Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production. Gut 65, 63–72 (2016).

    Article  CAS  Google Scholar 

  65. 65

    Desai, M.S. et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167, 1339–1353.e21 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. 66

    Corrêa-Oliveira, R., Fachi, J.L., Vieira, A., Sato, F.T. & Vinolo, M.A. Regulation of immune cell function by short-chain fatty acids. Clin. Transl. Immunology 5, e73 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. 67

    Kaiko, G.E. et al. The colonic crypt protects stem cells from microbiota-derived metabolites. Cell 165, 1708–1720 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. 68

    Kelly, C.J. et al. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe 17, 662–671 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. 69

    Kibe, R. et al. Upregulation of colonic luminal polyamines produced by intestinal microbiota delays senescence in mice. Sci. Rep. 4, 4548 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. 70

    Levy, M. et al. Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling. Cell 163, 1428–1443 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Zelante, T. et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 39, 372–385 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. 72

    Schiering, C. et al. Feedback control of AHR signalling regulates intestinal immunity. Nature 542, 242–245 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. 73

    Zhu, W. et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell 165, 111–124 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Wang, Z. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. 75

    Koeth, R.A. et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 19, 576–585 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. 76

    Dumas, M.E. et al. Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc. Natl. Acad. Sci. USA 103, 12511–12516 (2006).

    Article  CAS  Google Scholar 

  77. 77

    Levin, B.J. et al. A prominent glycyl radical enzyme in human gut microbiomes metabolizes trans-4-hydroxy-l-proline. Science 355, eaai8386 (2017). This study describes a novel chemically guided functional profiling–coupled protein sequence-similarity network with quantitative metagenomics analysis, which enabled the discovery and functional characterization of the GRE superfamily in the microbiome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. 78

    Donia, M.S. et al. A systematic analysis of biosynthetic gene clusters in the human microbiome reveals a common family of antibiotics. Cell 158, 1402–1414 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. 79

    Guo, C.J. et al. Discovery of reactive microbiota-derived metabolites that inhibit host proteases. Cell 168, 517–526.e18 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. 80

    Manoury, B. Proteases: essential actors in processing antigens and intracellular toll-like receptors. Front. Immunol. 4, 299 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. 81

    Kim, Y.G. et al. Gut dysbiosis promotes M2 macrophage polarization and allergic airway inflammation via fungi-induced PGE2 . Cell Host Microbe 15, 95–102 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. 82

    Vatanen, T. et al. Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell 165, 842–853 (2016)Bacteroides species in the microbiota of children from Finland and Estonia with high susceptibility to autoimmunity produce a type of LPS that inhibits innate immune signaling and endotoxin tolerance. These properties may interfere with early immunological education and contribute to the development of type 1 diabetes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. 83

    Bach, J.F. & Chatenoud, L. The hygiene hypothesis: an explanation for the increased frequency of insulin-dependent diabetes. Cold Spring Harb. Perspect. Med. 2, a007799 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. 84

    von Mutius, E. & Vercelli, D. Farm living: effects on childhood asthma and allergy. Nat. Rev. Immunol. 10, 861–868 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. 85

    Calderon-Gomez, E. et al. Commensal-specific CD4+ cells from patients with Crohn′s disease have a T-helper 17 inflammatory profile. Gastroenterology 151, 489–500 e3 (2016).

    Article  CAS  PubMed  Google Scholar 

  86. 86

    Campisi, L. et al. Apoptosis in response to microbial infection induces autoreactive TH17 cells. Nat. Immunol. 17, 1084–1092 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. 87

    Hand, T.W. et al. Acute gastrointestinal infection induces long-lived microbiota-specific T cell responses. Science 337, 1553–1556 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. 88

    Blander, J.M., Torchinsky, M.B. & Campisi, L. Revisiting the old link between infection and autoimmune disease with commensals and T helper 17 cells. Immunol. Res. 54, 50–68 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. 89

    Yang, Y. et al. Focused specificity of intestinal TH17 cells towards commensal bacterial antigens. Nature 510, 152–156 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. 90

    Wu, H.J. et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 32, 815–827 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. 91

    Lee, Y.K., Menezes, J.S., Umesaki, Y. & Mazmanian, S.K. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc. Natl. Acad. Sci. USA 108 (Suppl. 1), 4615–4622 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  92. 92

    Asquith, M.J. et al. Perturbed mucosal immunity and dysbiosis accompany clinical disease in a rat model of spondyloarthritis. Arthritis Rheumatol. 68, 2151–2162 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. 93

    Ciccia, F. et al. Dysbiosis and zonulin upregulation alter gut epithelial and vascular barriers in patients with ankylosing spondylitis. Ann. Rheum. Dis. 76, 1123–1132 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. 94

    Teng, F. et al. Gut microbiota drive autoimmune arthritis by promoting differentiation and migration of Peyer's patch T follicular helper cells. Immunity 44, 875–888 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. 95

    Cryan, J.F. & Dinan, T.G. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 13, 701–712 (2012).

    Article  CAS  PubMed  Google Scholar 

  96. 96

    Sharon, G., Sampson, T.R., Geschwind, D.H. & Mazmanian, S.K. The central nervous system and the gut microbiome. Cell 167, 915–932 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. 97

    Gabanyi, I. et al. Neuro-immune interactions drive tissue programming in intestinal macrophages. Cell 164, 378–391 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. 98

    Rieder, R., Wisniewski, P.J., Alderman, B.L. & Campbell, S.C. Microbes and mental health: a review. Brain Behav. Immun. http://dx.doi.org/10.1016/j.bbi.2017.01.016 (2017).

  99. 99

    Yano, J.M. et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161, 264–276 (2015)Indigenous spore-forming microbes from the gut microbiota produce metabolites that promote host serotonin biosynthesis in the gastrointestinal tract and affect gastrointestinal motility and hemostasis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. 100

    Reigstad, C.S. et al. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J. 29, 1395–1403 (2015).

    Article  CAS  PubMed  Google Scholar 

  101. 101

    O'Mahony, S.M., Clarke, G., Borre, Y.E., Dinan, T.G. & Cryan, J.F. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav. Brain Res. 277, 32–48 (2015).

    Article  CAS  PubMed  Google Scholar 

  102. 102

    Erny, D. et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat. Neurosci. 18, 965–977 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. 103

    Matcovitch-Natan, O. et al. Microglia development follows a stepwise program to regulate brain homeostasis. Science 353, aad8670 (2016).

    Article  CAS  Google Scholar 

  104. 104

    Sampson, T.R. et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson′s disease. Cell 167, 1469–1480.e12 (2016). SCFAs from gut microbes modulate microglia, are required for neuroinflammatory responses. They are also required for the hallmark α-synuclein-dependent motor and gastrointestinal deficits and brain pathology in a model of Parkinson's disease. The microbiota from people with Parkinson's disease induces motor dysfunction in this model.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. 105

    Rothhammer, V. et al. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat. Med. 22, 586–597 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. 106

    Schirmer, M. et al. Linking the human gut microbiome to inflammatory cytokine production capacity. Cell 167, 1125–1136.e8 (2016)This study investigates how differences in the microbiome contribute to variations in the human inflammatory response and demonstrates that TNF and IFNγ responses are associated with microbial palmitoleic acid and tryptophan metabolism. This study also provides a database for microbial mediators that influence human cytokine responses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. 107

    Buffie, C.G. et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 517, 205–208 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. 108

    Rangan, K.J. et al. A secreted bacterial peptidoglycan hydrolase enhances tolerance to enteric pathogens. Science 353, 1434–1437 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. 109

    Sansone, C.L. et al. Microbiota-dependent priming of antiviral intestinal immunity in Drosophila. Cell Host Microbe 18, 571–581 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. 110

    Khosravi, A. et al. Gut microbiota promote hematopoiesis to control bacterial infection. Cell Host Microbe 15, 374–381 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. 111

    Ichinohe, T. et al. Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc. Natl. Acad. Sci. USA 108, 5354–5359 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  112. 112

    Clarke, T.B. et al. Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat. Med. 16, 228–231 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. 113

    Pamer, E.G. Resurrecting the intestinal microbiota to combat antibiotic-resistant pathogens. Science 352, 535–538 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. 114

    Soares, M.P., Teixeira, L. & Moita, L.F. Disease tolerance and immunity in host protection against infection. Nat. Rev. Immunol. 17, 83–96 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. 115

    Schieber, A.M. et al. Disease tolerance mediated by microbiome E. coli involves inflammasome and IGF-1 signaling. Science 350, 558–563 (2015). This study elegantly demonstrates that a strain of E. coli naturally colonizing the intestine in mice is sufficient to prevent wasting after infections, owing to the sustained inflammasome-dependent activation of the IGF1–PI3K–AKT pathway in skeletal muscle.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. 116

    Pickard, J.M. et al. Rapid fucosylation of intestinal epithelium sustains host-commensal symbiosis in sickness. Nature 514, 638–641 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. 117

    Reichardt, N. et al. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME J. 8, 1323–1335 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. 118

    Fonseca, D.M. et al. Microbiota-dependent sequelae of acute infection compromise tissue-specific immunity. Cell 163, 354–366 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. 119

    Kim, D. et al. Nod2-mediated recognition of the microbiota is critical for mucosal adjuvant activity of cholera toxin. Nat. Med. 22, 524–530 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. 120

    Ruane, D. et al. Microbiota regulate the ability of lung dendritic cells to induce IgA class-switch recombination and generate protective gastrointestinal immune responses. J. Exp. Med. 213, 53–73 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. 121

    Oh, J.Z. et al. TLR5-mediated sensing of gut microbiota is necessary for antibody responses to seasonal influenza vaccination. Immunity 41, 478–492 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. 122

    Nakaya, H.I. et al. Systems biology of vaccination for seasonal influenza in humans. Nat. Immunol. 12, 786–795 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. 123

    Kollmann, T.R., Kampmann, B., Mazmanian, S.K., Marchant, A. & Levy, O. Protecting the newborn and young infant from infectious diseases: lessons from immune ontogeny. Immunity 46, 350–363 (2017).

    Article  CAS  PubMed  Google Scholar 

  124. 124

    Valdez, Y., Brown, E.M. & Finlay, B.B. Influence of the microbiota on vaccine effectiveness. Trends Immunol. 35, 526–537 (2014).

    Article  CAS  PubMed  Google Scholar 

  125. 125

    Grivennikov, S.I. et al. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature 491, 254–258 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. 126

    Huber, S. et al. IL-22BP is regulated by the inflammasome and modulates tumorigenesis in the intestine. Nature 491, 259–263 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. 127

    Ekbom, A., Helmick, C., Zack, M. & Adami, H.O. Ulcerative colitis and colorectal cancer: apopulation-based study. N. Engl. J. Med. 323, 1228–1233 (1990).

    Article  CAS  PubMed  Google Scholar 

  128. 128

    Arthur, J.C. et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 338, 120–123 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. 129

    Kostic, A.D. et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 14, 207–215 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. 130

    Wu, S. et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat. Med. 15, 1016–1022 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. 131

    Pitt, J.M. et al. Fine-tuning cancer immunotherapy: optimizing the gut microbiome. Cancer Res. 76, 4602–4607 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. 132

    Vétizou, M. et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350, 1079–1084 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. 133

    Sivan, A. et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350, 1084–1089 (2015). Refs. 132 and 133 show that the intestinal microbiota affects the outcome of checkpoint-blockade-based cancer immunotherapy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank all their past and present laboratory members for their contributions. We thank our funding agencies for their support to our laboratories: NIH grants DK072201, DK111862, AI073899, AI123284 and AI127658, the Searle Scholars Program, the Burroughs Wellcome Fund, the American Cancer Society and the Leukemia & Lymphoma Society to J.M.B.; NIH grant DK099381, the Crohn's and Colitis Foundation Senior Research Award 346814 and the Charina Foundation to R.S.L.; NIH grants DK098310 and AI123819, and Kenneth Rainin Foundation Innovator and Breakthrough awards to I.D.I.; NIH grants DP5OD012116, AI123368 and DK110262, and the Crohn's and Colitis Foundation, the Searle Scholars Program and the American Asthma Foundation Scholar Award to G.F.S.; NIH grants AI061570, AI087990, AI074878, AI083480, AI095466, AI095608, AI102942 and AI097333, Burroughs Wellcome Fund and the Crohn's & Colitis Foundation of America to D.A.

Author information

Affiliations

Authors

Corresponding author

Correspondence to J Magarian Blander.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Blander, J., Longman, R., Iliev, I. et al. Regulation of inflammation by microbiota interactions with the host. Nat Immunol 18, 851–860 (2017). https://doi.org/10.1038/ni.3780

Download citation

Further reading

Search

Quick links