Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nutrition, inflammation and cancer

Abstract

Quantitative and qualitative aspects of nutrition have a profound effect on leukocytes and thereby affect proinflammatory carcinogenic effects or anticancer immune responses. As a result, nutrition affects the incidence, natural progression and therapeutic response of malignant diseases, both in humans and in preclinical animal models. Here we discuss the molecular mechanisms through which alimentary cues modulate metabolic, microbial and neuroendocrine circuitries and thus affect the probability of developing premalignant lesions that progress to clinically manifested disease and the response to therapeutic intervention. We examine each of the connections that compose the triangle of nutrition, immunological and inflammatory reactions and cancer while focusing on the mechanistic aspects of these relationships.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Relationships among nutrition, inflammation and immunity, and cancer.
Figure 2: Pathophysiological mechanisms that link nutrition to carcinogenesis, aging and resistance to chemotherapy.
Figure 3: Immune-system-mediated effects of fasting and caloric-restriction mimetics in anticancer therapy.
Figure 4: Immune-system-mediated anticancer effects of dietary vitamin B6 and vitamin D3.

References

  1. 1

    Schoemaker, M.J. et al. Psychological stress, adverse life events and breast cancer incidence: a cohort investigation in 106,000 women in the United Kingdom. Breast Cancer Res. 18, 72 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2

    Font-Burgada, J., Sun, B. & Karin, M. Obesity and cancer: the oil that feeds the flame. Cell Metab. 23, 48–62 (2016). This paper, from major researchers in the field, provides an excellent overview of the link between obesity and cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Stringhini, S. et al. Socioeconomic status and the 25×25 risk factors as determinants of premature mortality: a multicohort study and meta-analysis of 1.7 million men and women. Lancet 389, 1229–1237 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  4. 4

    Deng, T., Lyon, C.J., Bergin, S., Caligiuri, M.A. & Hsueh, W.A. Obesity, inflammation, and cancer. Annu. Rev. Pathol. 11, 421–449 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Tomasetti, C. & Vogelstein, B. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science 347, 78–81 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. 6

    Tomasetti, C., Li, L. & Vogelstein, B. Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention. Science 355, 1330–1334 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    López-Otín, C., Galluzzi, L., Freije, J.M., Madeo, F. & Kroemer, G. Metabolic control of longevity. Cell 166, 802–821 (2016). This review summarizes the cause-and-effect relationship between the metabolic features of Western-style diets and an increased probability of developing life-threating cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. 8

    Koene, R.J., Prizment, A.E., Blaes, A. & Konety, S.H. Shared risk factors in cardiovascular disease and cancer. Circulation 133, 1104–1114 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9

    Hullar, M.A., Burnett-Hartman, A.N. & Lampe, J.W. Gut microbes, diet, and cancer. Cancer Treat. Res. 159, 377–399 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    O'Keefe, S.J. Diet, microorganisms and their metabolites, and colon cancer. Nat. Rev. Gastroenterol. Hepatol. 13, 691–706 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Schäfer, M. & Werner, S. Cancer as an overhealing wound: an old hypothesis revisited. Nat. Rev. Mol. Cell Biol. 9, 628–638 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. 12

    Palucka, A.K. & Coussens, L.M. The basis of oncoimmunology. Cell 164, 1233–1247 (2016).This article provides an overview of the major concepts and successes in tumor immunology and anticancer immunotherapy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Zitvogel, L., Kepp, O., Galluzzi, L. & Kroemer, G. Inflammasomes in carcinogenesis and anticancer immune responses. Nat. Immunol. 13, 343–351 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. 14

    Karki, R., Man, S.M. & Kanneganti, T.D. Inflammasomes and cancer. Cancer Immunol. Res. 5, 94–99 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Nathan, C. & Cunningham-Bussel, A. Beyond oxidative stress: an immunologist's guide to reactive oxygen species. Nat. Rev. Immunol. 13, 349–361 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Elliott, L.A., Doherty, G.A., Sheahan, K. & Ryan, E.J. Human tumor-infiltrating myeloid cells: phenotypic and functional diversity. Front. Immunol. 8, 86 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Chen, W. & Ten Dijke, P. Immunoregulation by members of the TGFβ superfamily. Nat. Rev. Immunol. 16, 723–740 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. 18

    Mittal, D., Gubin, M.M., Schreiber, R.D. & Smyth, M.J. New insights into cancer immunoediting and its three component phases: elimination, equilibrium and escape. Curr. Opin. Immunol. 27, 16–25 (2014).This paper provides an excellent synthesis of the major rules governing the relationship between oncogenesis and anticancer immunosurveillance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Zitvogel, L., Tesniere, A. & Kroemer, G. Cancer despite immunosurveillance: immunoselection and immunosubversion. Nat. Rev. Immunol. 6, 715–727 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Galluzzi, L., Buqué, A., Kepp, O., Zitvogel, L. & Kroemer, G. Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell 28, 690–714 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. 21

    Krysko, D.V. et al. Immunogenic cell death and DAMPs in cancer therapy. Nat. Rev. Cancer 12, 860–875 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Sharma, P. & Allison, J.P. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell 161, 205–214 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Pitt, J.M. et al. Resistance mechanisms to immune-checkpoint blockade in cancer: tumor-intrinsic and -extrinsic factors. Immunity 44, 1255–1269 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. 24

    Bindea, G. et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 39, 782–795 (2013).

    Article  CAS  Google Scholar 

  25. 25

    Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189–196 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Bougherara, H. et al. Real-time imaging of resident T cells in human lung and ovarian carcinomas reveals how different tumor microenvironments control T lymphocyte migration. Front. Immunol. 6, 500 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27

    Vacchelli, E. et al. Chemotherapy-induced antitumor immunity requires formyl peptide receptor 1. Science 350, 972–978 (2015). This paper provides genetic evidence supporting the idea that the success of anticancer chemotherapies depends on the immune system, in human breast cancer and colorectal carcinoma.

    Article  CAS  PubMed  Google Scholar 

  28. 28

    Shivappa, N., Steck, S.E., Hurley, T.G., Hussey, J.R. & Hébert, J.R. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 17, 1689–1696 (2014).

    Article  PubMed  Google Scholar 

  29. 29

    Prieto, I., Montemuiño, S., Luna, J., de Torres, M.V. & Amaya, E. The role of immunonutritional support in cancer treatment: current evidence. Clin. Nutr. http://dx.doi.org/0.1016/j.clnu.2016.11.015 (2016).

  30. 30

    Iyengar, N.M., Gucalp, A., Dannenberg, A.J. & Hudis, C.A. Obesity and cancer mechanisms: tumor microenvironment and inflammation. J. Clin. Oncol. 34, 4270–4276 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Louis, P., Hold, G.L. & Flint, H.J. The gut microbiota, bacterial metabolites and colorectal cancer. Nat. Rev. Microbiol. 12, 661–672 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Pal, D. et al. Fetuin-A acts as an endogenous ligand of TLR4 to promote lipid-induced insulin resistance. Nat. Med. 18, 1279–1285 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Mariño, G. et al. Regulation of autophagy by cytosolic acetyl-coenzyme A. Mol. Cell 53, 710–725 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Pietrocola, F., Galluzzi, L., Bravo-San Pedro, J.M., Madeo, F. & Kroemer, G. Acetyl coenzyme A: a central metabolite and second messenger. Cell Metab. 21, 805–821 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Yang, L., Li, P., Fu, S., Calay, E.S. & Hotamisligil, G.S. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab. 11, 467–478 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Umemura, A. et al. p62, upregulated during preneoplasia, induces hepatocellular carcinogenesis by maintaining survival of stressed HCC-initiating cells. Cancer Cell 29, 935–948 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Zhong, Z., Sanchez-Lopez, E. & Karin, M. Autophagy, inflammation, and immunity: a troika governing cancer and its treatment. Cell 166, 288–298 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Doerner, S.K. et al. High-fat diet-induced complement activation mediates intestinal inflammation and neoplasia, independent of obesity. Mol. Cancer Res. 14, 953–965 (2016). This paper formally demonstrates that a high-fat diet can trigger intestinal carcinogenesis even in mice genetically resistant to the induction of obesity.

    Article  CAS  Google Scholar 

  39. 39

    Klevorn, L.E. & Teague, R.M. Adapting cancer immunotherapy models for the real world. Trends Immunol. 37, 354–363 (2016). This important conceptual paper investigates the multiple modulatory factors (including obesity) that affect the efficacy of the immune system, with regard to the recognition of neoplastic cells in the context of immunotherapies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Lamas, O., Marti, A. & Martínez, J.A. Obesity and immunocompetence. Eur. J. Clin. Nutr. 56 (Suppl. 3), S42–S45 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  41. 41

    Yang, H. et al. Obesity accelerates thymic aging. Blood 114, 3803–3812 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Macia, L. et al. Impairment of dendritic cell functionality and steady-state number in obese mice. J. Immunol. 177, 5997–6006 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Conroy, M.J., Dunne, M.R., Donohoe, C.L. & Reynolds, J.V. Obesity-associated cancer: an immunological perspective. Proc. Nutr. Soc. 75, 125–138 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  44. 44

    James, B.R. et al. Diet-induced obesity alters dendritic cell function in the presence and absence of tumor growth. J. Immunol. 189, 1311–1321 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Mirsoian, A. et al. Adiposity induces lethal cytokine storm after systemic administration of stimulatory immunotherapy regimens in aged mice. J. Exp. Med. 211, 2373–2383 (2014). This paper shows that preexisting adiposity limits the efficacy of immunotherapy in an age-dependent manner by inducing the production of proinflammatory and cytotoxic cytokines.

    Article  PubMed  PubMed Central  Google Scholar 

  46. 46

    Traba, J. et al. Fasting and refeeding differentially regulate NLRP3 inflammasome activation in human subjects. J. Clin. Invest. 125, 4592–4600 (2015). This pilot study demonstrates the major effects of short-term fasting on the inflammatory response.

    Article  PubMed  PubMed Central  Google Scholar 

  47. 47

    Pietrocola, F. et al. Metabolic effects of fasting on human and mouse blood in vivo. Autophagy 13, 567–578 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Wang, A., Huen, S.C., Luan, H.H., Yu, S., Zhang, C. & Gallezot, J.D. et al. Opposing effects of fasting metabolism on tissue tolerance in bacterial and viral inflammation. Cell 166, 1512–1525.e1512 (2016). This paper investigates voluntary fasting as a physiological component of the sickness response elicited by bacterial infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Dror, E. et al. Postprandial macrophage-derived IL-1β stimulates insulin, and both synergistically promote glucose disposal and inflammation. Nat. Immunol. 18, 283–292 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    van Niekerk, G., Loos, B., Nell, T. & Engelbrecht, A.M. Autophagy: a free meal in sickness-associated anorexia. Autophagy 12, 727–734 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Puchalska, P. & Crawford, P.A. Multi-dimensional roles of ketone bodies in fuel metabolism, signaling, and therapeutics. Cell Metab. 25, 262–284 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Youm, Y.H. et al. The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat. Med. 21, 263–269 (2015). This paper demonstrates that fasting-induced production of β-hydroxybutyrate limits inflammation by hindering NRLP3 inflammasome activation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Hopkins, B.D., Goncalves, M.D. & Cantley, L.C. Obesity and cancer mechanisms: cancer metabolism. J. Clin. Oncol. 34, 4277–4283 (2016). This excellent position paper describes the major negative effects of obesity on oncogenesis and cancer progression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Moore, L.L., Chadid, S., Singer, M.R., Kreger, B.E. & Denis, G.V. Metabolic health reduces risk of obesity-related cancer in Framingham Study adults. Cancer Epidemiol. Biomarkers Prev. 23, 2057–2065 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Iyengar, N.M. et al. Systemic correlates of white adipose tissue inflammation in early-stage breast cancer. Clin. Cancer Res. 22, 2283–2289 (2016).

    Article  CAS  PubMed  Google Scholar 

  56. 56

    Kolb, R. et al. Obesity-associated NLRC4 inflammasome activation drives breast cancer progression. Nat. Commun. 7, 13007 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Shivappa, N., Blair, C.K., Prizment, A.E., Jacobs, D.R. & Hebert, J.R. Prospective study of the dietary inflammatory index and risk of breast cancer in postmenopausal women. Mol. Nutr. Food Res. 61, 1600592 (2016).

    Article  CAS  Google Scholar 

  58. 58

    Harmon, B.E. et al. The dietary inflammatory index is associated with colorectal cancer risk in the multiethnic cohort. J. Nutr. 147, 430–438 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Hodge, A.M. et al. Dietary inflammatory index, Mediterranean diet score, and lung cancer: a prospective study. Cancer Causes Control 27, 907–917 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    Steck, S.E., Guinter, M., Zheng, J. & Thomson, C.A. Index-based dietary patterns and colorectal cancer risk: a systematic review. Adv. Nutr. 6, 763–773 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. 61

    Mocellin, S., Briarava, M. & Pilati, P. Vitamin B6 and cancer risk: a field synopsis and meta-analysis. J. Natl. Cancer Inst. 109, 1–9 (2017).

    Article  CAS  PubMed  Google Scholar 

  62. 62

    Aranda, F. et al. Immune-dependent antineoplastic effects of cisplatin plus pyridoxine in non-small-cell lung cancer. Oncogene 34, 3053–3062 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. 63

    Galluzzi, L. et al. Prognostic impact of vitamin B6 metabolism in lung cancer. Cell Rep. 2, 257–269 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. 64

    Goodwin, P.J., Ennis, M., Pritchard, K.I., Koo, J. & Hood, N. Prognostic effects of 25-hydroxyvitamin D levels in early breast cancer. J. Clin. Oncol. 27, 3757–3763 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. 65

    Tretli, S., Hernes, E., Berg, J.P., Hestvik, U.E. & Robsahm, T.E. Association between serum 25(OH)D and death from prostate cancer. Br. J. Cancer 100, 450–454 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. 66

    Dou, R. et al. Vitamin D and colorectal cancer: molecular, epidemiological and clinical evidence. Br. J. Nutr. 115, 1643–1660 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. 67

    Song, M. et al. Plasma 25-hydroxyvitamin D and colorectal cancer risk according to tumour immunity status. Gut 65, 296–304 (2016). This work provides the first evidence of an inverse correlation between levels of 25-hydroxyvitamin D and colorectal cancer risk, according to the degree of lymphocyte infiltration in the tumor bed.

    Article  CAS  PubMed  Google Scholar 

  68. 68

    Giangreco, A.A. et al. Differential expression and regulation of vitamin D hydroxylases and inflammatory genes in prostate stroma and epithelium by 1,25-dihydroxyvitamin D in men with prostate cancer and an in vitro model. J. Steroid Biochem. Mol. Biol. 148, 156–165 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. 69

    Batai, K., Murphy, A.B., Nonn, L. & Kittles, R.A. Vitamin D and immune response: implications for prostate cancer in African Americans. Front. Immunol. 7, 53 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. 70

    Cao, Y. et al. Regular aspirin use associates with lower risk of colorectal cancers with low numbers of tumor-infiltrating lymphocytes. Gastroenterology 151, 879–892.e4 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Bruce, D. & Cantorna, M.T. Intrinsic requirement for the vitamin D receptor in the development of CD8αα-expressing T cells. J. Immunol. 186, 2819–2825 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. 72

    Larriba, M.J. et al. Vitamin D receptor deficiency enhances Wnt/β-catenin signaling and tumor burden in colon cancer. PLoS One 6, e23524 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. 73

    Protiva, P. et al. Calcium and 1,25-dihydroxyvitamin D3 modulate genes of immune and inflammatory pathways in the human colon: a human crossover trial. Am. J. Clin. Nutr. 103, 1224–1231 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Buck, K. et al. Serum enterolactone and prognosis of postmenopausal breast cancer. J. Clin. Oncol. 29, 3730–3738 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. 75

    Hallund, J., Tetens, I., Bügel, S., Tholstrup, T. & Bruun, J.M. The effect of a lignan complex isolated from flaxseed on inflammation markers in healthy postmenopausal women. Nutr. Metab. Cardiovasc. Dis. 18, 497–502 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. 76

    Eisenberg, T. et al. Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat. Med. 22, 1428–1438 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. 77

    Pietrocola, F. et al. Caloric restriction mimetics enhance anticancer immunosurveillance. Cancer Cell 30, 147–160 (2016). This paper demonstrates that caloric-restriction mimetics are as efficient as fasting in stimulating an autophagy-dependent anticancer immune response.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. 78

    Furman, D. et al. Expression of specific inflammasome gene modules stratifies older individuals into two extreme clinical and immunological states. Nat. Med. 23, 174–184 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. 79

    Pietrocola, F. et al. Coffee induces autophagy in vivo. Cell Cycle 13, 1987–1994 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. 80

    Alicandro, G., Tavani, A. & La Vecchia, C. Coffee and cancer risk: a summary overview. Eur. J. Cancer Prev. http://dx.doi.org/10.1097/CEJ.0000000000000341 (2017).

  81. 81

    Alisson-Silva, F., Kawanishi, K. & Varki, A. Human risk of diseases associated with red meat intake: analysis of current theories and proposed role for metabolic incorporation of a non-human sialic acid. Mol. Aspects Med. 51, 16–30 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. 82

    Bao, Y. et al. Association of nut consumption with total and cause-specific mortality. N. Engl. J. Med. 369, 2001–2011 (2013). This work demonstrates a significant and intriguing inverse correlation between nut consumption and cancer-induced mortality.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. 83

    Bonaccio, M. et al. Nut consumption is inversely associated with both cancer and total mortality in a Mediterranean population: prospective results from the Moli-sani study. Br. J. Nutr. 114, 804–811 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. 84

    Siri-Tarino, P.W., Chiu, S., Bergeron, N. & Krauss, R.M. Saturated fats versus polyunsaturated fats versus carbohydrates for cardiovascular disease prevention and treatment. Annu. Rev. Nutr. 35, 517–543 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. 85

    Flint, T.R. et al. Tumor-induced IL-6 reprograms host metabolism to suppress anti-tumor immunity. Cell Metab. 24, 672–684 (2016). This work elucidates how tumor-driven IL-6 production subverts the immunostimulatory effects induced by fasting and a ketogenic diet, thereby limiting anticancer immunity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. 86

    Sjöström, L. et al. Effects of bariatric surgery on cancer incidence in obese patients in Sweden (Swedish Obese Subjects Study): a prospective, controlled intervention trial. Lancet Oncol. 10, 653–662 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  87. 87

    Rossi, E.L. et al. Obesity-associated alterations in inflammation, epigenetics, and mammary tumor growth persist in formerly obese mice. Cancer Prev. Res. (Phila.) 9, 339–348 (2016).

    Article  CAS  Google Scholar 

  88. 88

    Lee, C. et al. Fasting cycles retard growth of tumors and sensitize a range of cancer cell types to chemotherapy. Sci. Transl. Med. 4, 124ra27 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  89. 89

    Di Biase, S. et al. Fasting-mimicking diet reduces HO-1 to promote T cell-mediated tumor cytotoxicity. Cancer Cell 30, 136–146 (2016). This paper shows that a fasting-mimicking diet has immune-system-dependent anticancer activity, presumably through increasing the frequency of common CD8+ lymphocyte precursors in the bone marrow.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. 90

    Cheng, C.W. et al. Fasting-mimicking diet promotes Ngn3-driven beta-cell regeneration to reverse diabetes. Cell 168, 775–788.e712 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. 91

    Kreso, A. & Dick, J.E. Evolution of the cancer stem cell model. Cell Stem Cell 14, 275–291 (2014).

    Article  CAS  Google Scholar 

  92. 92

    Madeo, F., Pietrocola, F., Eisenberg, T. & Kroemer, G. Caloric restriction mimetics: towards a molecular definition. Nat. Rev. Drug Discov. 13, 727–740 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. 93

    Klement, R.J., Champ, C.E., Otto, C. & Kämmerer, U. Anti-tumor effects of ketogenic diets in mice: a meta-analysis. PLoS One 11, e0155050 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. 94

    Woolf, E.C., Syed, N. & Scheck, A.C. Tumor metabolism, the ketogenic diet and β-hydroxybutyrate: novel approaches to adjuvant brain tumor therapy. Front. Mol. Neurosci. 9, 122 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. 95

    Lussier, D.M. et al. Enhanced immunity in a mouse model of malignant glioma is mediated by a therapeutic ketogenic diet. BMC Cancer 16, 310 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. 96

    Husain, Z., Huang, Y., Seth, P. & Sukhatme, V.P. Tumor-derived lactate modifies antitumor immune response: effect on myeloid-derived suppressor cells and NK cells. J. Immunol. 191, 1486–1495 (2013).

    Article  CAS  PubMed  Google Scholar 

  97. 97

    Alpha-Tocopherol, Beta Carotene Cancer Prevention Study Group. The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. N. Engl. J. Med. 330, 1029–1035 (1994).

  98. 98

    Chen, A.C. et al. A Phase 3 randomized trial of nicotinamide for skin-cancer chemoprevention. N. Engl. J. Med. 373, 1618–1626 (2015).

    Article  CAS  Google Scholar 

  99. 99

    Zhang, H. et al. NAD+ repletion improves mitochondrial and stem cell function and enhances life span in mice. Science 352, 1436–1443 (2016). This pioneering paper reveals the antisenescence effects of NAD in a mammalian model of aging.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

G.K. is supported by the Ligue contre le Cancer (Équipe Labelisée); Agence National de la Recherche (ANR)—Projets Blancs; ANR, under the framework of E-Rare-2, ERA-Net for Research on Rare Diseases; Association pour la Recherche sur le Cancer (ARC); Cancéropôle Ile-de-France; Institut National du Cancer (INCa); Institut Universitaire de France; Fondation pour la Recherche Médicale (FRM); European Commission (ArtForce); European Research Council (ERC); LeDucq Foundation; LabEx Immuno-Oncology; RHU Torino Lumière, SIRIC Stratified Oncology Cell DNA Repair and Tumor Immune Elimination (SOCRATE); SIRIC Cancer Research and Personalized Medicine (CARPEM); and Paris Alliance of Cancer Research Institutes (PACRI).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Laurence Zitvogel or Guido Kroemer.

Ethics declarations

Competing interests

L.Z. and G.K. are founders of the biotechnology company EverImmune.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zitvogel, L., Pietrocola, F. & Kroemer, G. Nutrition, inflammation and cancer. Nat Immunol 18, 843–850 (2017). https://doi.org/10.1038/ni.3754

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing