Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mice deficient in NRROS show abnormal microglial development and neurological disorders

Abstract

Microglia and other tissue-resident macrophages within the central nervous system (CNS) have essential roles in neural development, inflammation and homeostasis. However, the molecular pathways underlying their development and function remain poorly understood. Here we report that mice deficient in NRROS, a myeloid-expressed transmembrane protein in the endoplasmic reticulum, develop spontaneous neurological disorders. NRROS-deficient (Nrros−/−) mice show defects in motor functions and die before 6 months of age. Nrros−/− mice display astrogliosis and lack normal CD11bhiCD45lo microglia, but they show no detectable demyelination or neuronal loss. Instead, perivascular macrophage-like myeloid cells populate the Nrros−/− CNS. Cx3cr1-driven deletion of Nrros shows its crucial role in microglial establishment during early embryonic stages. NRROS is required for normal expression of Sall1 and other microglial genes that are important for microglial development and function. Our study reveals a NRROS-mediated pathway that controls CNS-resident macrophage development and affects neurological function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nrros−/− mice develop spontaneous neurological disorders and early mortality.
Figure 2: Abnormal CNS astrocytes and myeloid cells in Nrros−/− mice.
Figure 3: Microglia in Nrros−/− mice display phenotypes similar to PVMs.
Figure 4: CNS-resident macrophages but not peripheral macrophages contribute to PLC development and neurological disorders.
Figure 5: NOX2 does not contribute significantly to the neurological phenotype in Nrros−/− mice.
Figure 6: Defective early microglial development in Nrros−/− mice.
Figure 7: Intrinsic role of NRROS in Cx3cr1+ lineage during early microglial differentiation.
Figure 8: PLCs in Nrros−/− mice display characteristics distinct from those of WT microglia.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Referenced accessions

ArrayExpress

Gene Expression Omnibus

References

  1. Hanisch, U.K. & Kettenmann, H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat. Neurosci. 10, 1387–1394 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Aguzzi, A., Barres, B.A. & Bennett, M.L. Microglia: scapegoat, saboteur, or something else? Science 339, 156–161 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Prinz, M. & Priller, J. Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat. Rev. Neurosci. 15, 300–312 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Ransohoff, R.M. & Cardona, A.E. The myeloid cells of the central nervous system parenchyma. Nature 468, 253–262 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Wu, Y., Dissing-Olesen, L., MacVicar, B.A. & Stevens, B. Microglia: dynamic mediators of synapse development and plasticity. Trends Immunol. 36, 605–613 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Miron, V.E. et al. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat. Neurosci. 16, 1211–1218 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Parkhurst, C.N. et al. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155, 1596–1609 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nimmerjahn, A., Kirchhoff, F. & Helmchen, F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308, 1314–1318 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Heneka, M.T., Kummer, M.P. & Latz, E. Innate immune activation in neurodegenerative disease. Nat. Rev. Immunol. 14, 463–477 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Prinz, M., Priller, J., Sisodia, S.S. & Ransohoff, R.M. Heterogeneity of CNS myeloid cells and their roles in neurodegeneration. Nat. Neurosci. 14, 1227–1235 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Perdiguero, E.G. et al. The origin of tissue-resident macrophages: when an erythro-myeloid progenitor is an erythro-myeloid progenitor. Immunity 43, 1023–1024 (2015).

    Article  PubMed  CAS  Google Scholar 

  12. Ginhoux, F. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330, 841–845 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kierdorf, K. et al. Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat. Neurosci. 16, 273–280 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Schulz, C. et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336, 86–90 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Chen, S.K. et al. Hematopoietic origin of pathological grooming in Hoxb8 mutant mice. Cell 141, 775–785 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bruttger, J. et al. Genetic cell ablation reveals clusters of local self-renewing microglia in the mammalian central nervous system. Immunity 43, 92–106 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Goldmann, T. et al. Origin, fate and dynamics of macrophages at central nervous system interfaces. Nat. Immunol. 17, 797–805 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Butovsky, O. et al. Identification of a unique TGF-β-dependent molecular and functional signature in microglia. Nat. Neurosci. 17, 131–143 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Wang, Y. et al. IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat. Immunol. 13, 753–760 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Greter, M. et al. Stroma-derived interleukin-34 controls the development and maintenance of langerhans cells and the maintenance of microglia. Immunity 37, 1050–1060 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Beers, D.R. et al. Wild-type microglia extend survival in PU.1 knockout mice with familial amyotrophic lateral sclerosis. Proc. Natl. Acad. Sci. USA 103, 16021–16026 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Minten, C., Terry, R., Deffrasnes, C., King, N.J. & Campbell, I.L. IFN regulatory factor 8 is a key constitutive determinant of the morphological and molecular properties of microglia in the CNS. PLoS One 7, e49851 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Buttgereit, A. et al. Sall1 is a transcriptional regulator defining microglia identity and function. Nat. Immunol. 17, 1397–1406 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Noubade, R. et al. NRROS negatively regulates reactive oxygen species during host defence and autoimmunity. Nature 509, 235–239 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Altuntas, C.Z. et al. Bladder dysfunction in mice with experimental autoimmune encephalomyelitis. J. Neuroimmunol. 203, 58–63 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Constantinescu, C.S., Farooqi, N., O'Brien, K. & Gran, B. Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br. J. Pharmacol. 164, 1079–1106 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pekny, M. & Pekna, M. Astrocyte reactivity and reactive astrogliosis: costs and benefits. Physiol. Rev. 94, 1077–1098 (2014).

    Article  PubMed  Google Scholar 

  28. Ito, D. et al. Microglia-specific localisation of a novel calcium binding protein, Iba1. Brain Res. Mol. Brain Res. 57, 1–9 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Graeber, M.B., Streit, W.J., Kiefer, R., Schoen, S.W. & Kreutzberg, G.W. New expression of myelomonocytic antigens by microglia and perivascular cells following lethal motor neuron injury. J. Neuroimmunol. 27, 121–132 (1990).

    Article  CAS  PubMed  Google Scholar 

  30. Zamanian, J.L. et al. Genomic analysis of reactive astrogliosis. J. Neurosci. 32, 6391–6410 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hickman, S.E. et al. The microglial sensome revealed by direct RNA sequencing. Nat. Neurosci. 16, 1896–1905 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ford, A.L., Goodsall, A.L., Hickey, W.F. & Sedgwick, J.D. Normal adult ramified microglia separated from other central nervous system macrophages by flow cytometric sorting. Phenotypic differences defined and direct ex vivo antigen presentation to myelin basic protein-reactive CD4+ T cells compared. J. Immunol. 154, 4309–4321 (1995).

    CAS  PubMed  Google Scholar 

  33. Mizutani, M. et al. The fractalkine receptor but not CCR2 is present on microglia from embryonic development throughout adulthood. J. Immunol. 188, 29–36 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Greter, M., Lelios, I. & Croxford, A.L. Microglia versus myeloid cell nomenclature during brain inflammation. Front. Immunol. 6, 249 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Goldmann, T. et al. A new type of microglia gene targeting shows TAK1 to be pivotal in CNS autoimmune inflammation. Nat. Neurosci. 16, 1618–1626 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Andersen, J.K. Oxidative stress in neurodegeneration: cause or consequence? Nat. Med. 10 (Suppl.), S18–S25 (2004).

    Article  PubMed  CAS  Google Scholar 

  37. Banci, L. et al. SOD1 and amyotrophic lateral sclerosis: mutations and oligomerization. PLoS One 3, e1677 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Zeisel, A. et al. Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347, 1138–1142 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Rivest, S. Molecular insights on the cerebral innate immune system. Brain Behav. Immun. 17, 13–19 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Wang, Y. et al. TREM2 lipid sensing sustains the microglial response in an Alzheimer's disease model. Cell 160, 1061–1071 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lou, N. et al. Purinergic receptor P2RY12-dependent microglial closure of the injured blood-brain barrier. Proc. Natl. Acad. Sci. USA 113, 1074–1079 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cardona, A.E. et al. Control of microglial neurotoxicity by the fractalkine receptor. Nat. Neurosci. 9, 917–924 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Nandi, S. et al. The CSF-1 receptor ligands IL-34 and CSF-1 exhibit distinct developmental brain expression patterns and regulate neural progenitor cell maintenance and maturation. Dev. Biol. 367, 100–113 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Roumier, A. et al. Impaired synaptic function in the microglial KARAP/DAP12-deficient mouse. J. Neurosci. 24, 11421–11428 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wakselman, S. et al. Developmental neuronal death in hippocampus requires the microglial CD11b integrin and DAP12 immunoreceptor. J. Neurosci. 28, 8138–8143 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Matcovitch-Natan, O. et al. Microglia development follows a stepwise program to regulate brain homeostasis. Science 353, aad8670 (2016).

    Article  PubMed  CAS  Google Scholar 

  47. Zusso, M. et al. Regulation of postnatal forebrain amoeboid microglial cell proliferation and development by the transcription factor Runx1. J. Neurosci. 32, 11285–11298 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Marden, J.J. et al. Redox modifier genes in amyotrophic lateral sclerosis in mice. J. Clin. Invest. 117, 2913–2919 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang, D., Hu, X., Qian, L., O'Callaghan, J.P. & Hong, J.S. Astrogliosis in CNS pathologies: is there a role for microglia? Mol. Neurobiol. 41, 232–241 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Gurney, M.E. et al. Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science 264, 1772–1775 (1994).

    Article  CAS  PubMed  Google Scholar 

  51. Georgiades, P. et al. VavCre transgenic mice: a tool for mutagenesis in hematopoietic and endothelial lineages. Genesis 34, 251–256 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Hanson, J.E. et al. Chronic GluN2B antagonism disrupts behavior in wild-type mice without protecting against synapse loss or memory impairment in Alzheimer's disease mouse models. J. Neurosci. 34, 8277–8288 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Srinivasan, K. et al. Untangling the brain's neuroinflammatory and neurodegenerative transcriptional responses. Nat. Commun. 7, 11295 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wu, T.D. & Nacu, S. Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics 26, 873–881 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Love, M.I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Hochberg, Y. & Benjamini, Y. More powerful procedures for multiple significance testing. Stat. Med. 9, 811–818 (1990).

    Article  CAS  PubMed  Google Scholar 

  57. Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Morgan, K., Kharas, M., Dzierzak, E. & Gilliland, D.G. Isolation of early hematopoietic stem cells from murine yolk sac and AGM. J. Vis. Exp. 16, e789 (2008).

    Google Scholar 

  59. Sachs, H.H., Bercury, K.K., Popescu, D.C., Narayanan, S.P. & Macklin, W.B. A new model of cuprizone-mediated demyelination/remyelination. ASN Neuro 6, 1–16 (2014).

    Article  CAS  Google Scholar 

  60. Brey, E.M. et al. Automated selection of DAB-labeled tissue for immunohistochemical quantification. J. Histochem. Cytochem. 51, 575–584 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. Srinivasan and D. Hansen for assistance with flow cytometry–purified brain cells and fluidigm analysis; I. Peng for assistance with bone marrow transfer; B. Lauffer and P. Steiner for advice and help with microglia isolation and culture; C. Le Pichon, S. Dominguez and M. Weber for advice with behavioral studies; Z. Modrusan, C. Ha, J. Stinson and J. Guillory for assistance with RNA-seq; L. Diehl and P. Caplazi for advice and help with histopathological studies; and C. Allen, M. Thayer, M. Long, M. Lamoureux, T. Scholls and the Genentech Lab Animals facility for help and support with mouse colonies.

Author information

Authors and Affiliations

Authors

Contributions

K.W. and W.O. designed the study and wrote the manuscript. K.W., R.N., P.M., N.O. and O.F. performed experiments. R.N., P.M. and R.P. edited the manuscript. J.A.H. and B.A.F. analyzed RNA-seq data. K.W., P.M. and K.S.-L. designed experiments.

Corresponding authors

Correspondence to Kit Wong or Wenjun Ouyang.

Ethics declarations

Competing interests

All authors are current or previous employees of Genentech.

Integrated supplementary information

Supplementary Figure 1 Nrros-/- mice show distended bladder and normal relative mass of major organs.

Representative H&E stained images of (a - b) bladder (bar = 500 μm), (c - d) ureter, (e - f) renal papillary epithelium (bar = 100 μm) and (g-h) renal glomerulus (bar = 50 μm) from Nrros+/+ and Nrros-/- animals. Graphs depicting the mass of gastrocnemius (i), tibialis (j), brain (k) and kidney (l) as percent body weight in Nrros+/+ and Nrros-/- animals. Arrow, outer smooth muscle wall; *, transitional epithelium. N ≥ 8. Error bar: ± SEM. Animals were 13 - 15 weeks old.

Supplementary Figure 2 Absence of immune infiltration and neurodegenerative signs in Nrros−/− mice.

Representative images of spinal cord cross sections from Nrros+/+ and Nrros-/- animals stained with (a) H&E (bar = 50 μm), (d) Nissl (bar = 500 μm) or (e) Luxol fast blue (bar = 1 mm). (b) Survival curve (n = 10) and (c) wire hang from WT and Nrros-/-Rag2-/- animals (12 - 14 weeks old; n = 5). Quantification of (f) number of axons per area, (g) total number of axons and (h) percent axons with indicated lumen area from p-Phenylenediamine staining on cross sections of sciatic nerve (n = 8). 15-week old Nrros+/+ and Nrros-/-animals are shown. Error bar: ± SEM. ***P < 0.001. Log rank test (b), One-way ANOVA (c), unpaired Student’s t-test (f - h).

Supplementary Figure 3 Signs of astrogliosis and altered expression of microglia signature genes in Nrros−/− brains.

RNA-seq comparing expression of whole brains from Nrros+/+ and Nrros-/- mice. Expression levels of (a - d) astrogliosis and (e - i) microglial markers. Itam (CD11b); Emr1 (F4/80). N = 5. (j) Full Western blot for protein expression of NRROS in the indicated cell types from WT brain as shown in Figure 3e. Actin as loading control. (k – p) Representative histograms of markers indicated in CD11b+ cells from Nrros+/+ and Nrros-/- brains. N = 3. Error bar: ± SEM. *P < 0.05; **P < 0.01; ***P < 0.001. Unpaired Students’ t-test.

Supplementary Figure 4 Loss of Nrros from resident CNS macrophages but not peripheral myeloid cells causes neurological disorders.

(a - b) RT-qPCR analysis for Nrros expression in CD11b+ cells isolated from the brains of mice of the indicated genotype. Performance of (c - g) Nrrosfl/flVav-cre or (h - l) Nrrosfl/flLyz2-cre mice in rotarod test at (c, h) pretraining (9-week old), (d, i) fixed and (e, j) accelerating condition. S, session; T, trial. (f, k) Total beam breaks and (g, l) percent center beam breaks at open field tests. Animals were 10-11-week old unless specified otherwise. N = 16. (m-o) Nrros+/+ (WT) and Nrros-/- (KO) mice were sub lethally irradiated and reconstituted with donor marrow from either WT or KO mice (n = 15, 18, 14, 10). (m) Survival curve of WT and KO recipients grafted with indicated bone marrow stem cells. Quantification of percent engraftment in the blood (n) and brains (o) of these animals (n = 3). Error bar: ± SEM. *P < 0.05; **P < 0.01; ***P < 0.001. (m) Log-rank test; all other analyses, unpaired Student’s t-test. ND, not determined.

Supplementary Figure 5 Loss of NOX2 fails to rescue neurological phenotype in Nrros−/− mice.

(a) mRNA expression of Cybb (NOX2) in Nrros+/+ and Nrros-/- brains from RNA-seq. (b - f) Performance of Nrros+/+, Nrros-/-, Cybb-/- and Nrros-/-Cybb-/- in rotarod test at (b) pretraining (9 weeks), (c) fixed and (d) accelerating conditions. S, session; T, trial. (e) Total beam breaks and (f) percent center beam breaks in open field test. Animals were 11-week old unless specified otherwise (n = 16). Error bar: ± SEM. *P < 0.05; **P < 0.01; ***P < 0.001. One-way ANOVA, (c, e, f); Unpaired Student’s t-test (a - c).

Supplementary Figure 6 Efficiency of Nrros deletion in Nrrosfl/flCx3cr1CreER mice.

Relative expression of Nrros in (a) E14.5 YFP+ FACS-sorted cells and (b) E21 CD11b+ cells from brains of E10.5 tamoxifen-treated animals. (c) Relative expression of Nrros in CD11b+ cells from the brain at week 9 after tamoxifen treatment at week 3. N = 3. Error bar: ± SEM. *P < 0.05. Unpaired Student’s t-test.

Supplementary Figure 7 Altered macrophage population in Nrros−/− brains.

(a) Gating strategy for FACS-sorting of microglia, PVM and PLCs. Expression level of (b) Nrros, (c - k) microglial, (l - o) PVM surface markers from RNA-seq comparing Nrros+/+ (WT) microglia, PVM and Nrros-/- PLCs (n = 3). Error bar: ± SEM. **P < 0.01; ***P < 0.001. Unpaired Student’s t-test. 12-week old animals were used.

Supplementary Figure 8 Nrros−/− PLCs do not resemble activated microglia.

(a - c) Gene expression of indicated cytokines from RNA-seq of Nrros+/+ (WT) microglia, PVM and Nrros-/- (KO) PLCs (n = 3). (d - f) Basal cytokine levels secreted by cultured myeloid cells isolated from WT and KO brains. (g) Heat map showing top 30 differentially expressed genes between WT PVM and KO PLCs. N = 3. Error bar: ± SEM. *P < 0.05; **P < 0.01; ***P < 0.001. Unpaired Student’s t-test. 12-week old animals were used.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 (PDF 2152 kb)

Supplementary Table 1

Differentially expressed genes in WT and Nrros−/− brains. (XLSX 8 kb)

Supplementary Table 2

Top 30 differentially expressed genes in WT PVMs and Nrros−/− PLCs. (XLSX 5 kb)

Supplementary Table 3

Differentially expressed gene in Nrros−/− PLCs and Sall1−/− microglia. (XLSX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wong, K., Noubade, R., Manzanillo, P. et al. Mice deficient in NRROS show abnormal microglial development and neurological disorders. Nat Immunol 18, 633–641 (2017). https://doi.org/10.1038/ni.3743

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.3743

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing