Infectious immunity in the central nervous system and brain function

Abstract

Inflammation is emerging as a critical mechanism underlying neurological disorders of various etiologies, yet its role in altering brain function as a consequence of neuroinfectious disease remains unclear. Although acute alterations in mental status due to inflammation are a hallmark of central nervous system (CNS) infections with neurotropic pathogens, post-infectious neurologic dysfunction has traditionally been attributed to irreversible damage caused by the pathogens themselves. More recently, studies indicate that pathogen eradication within the CNS may require immune responses that interfere with neural cell function and communication without affecting their survival. In this Review we explore inflammatory processes underlying neurological impairments caused by CNS infection and discuss their potential links to established mechanisms of psychiatric and neurodegenerative diseases.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Neuroinfectious diseases and cytokine modulation of brain functions.

Marina Corral Spence/Springer Nature

Figure 2: Potential mechanisms of neurological sequelae subsequent to bacterial and fungal meningoencephalitis.

Marina Corral Spence/Springer Nature

Figure 3: Mechanisms underlying neurological sequelae in a subset of viral encephalitis survivors.

Marina Corral Spence/Springer Nature

References

  1. 1

    Aliberti, J. Host persistence: exploitation of anti-inflammatory pathways by Toxoplasma gondii. Nat. Rev. Immunol. 5, 162–170 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2

    Ronca, S.E., Dineley, K.T. & Paessler, S. Neurological sequelae resulting from encephalitic alphavirus infection. Front. Microbiol. 7, 959 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3

    Barichello, T. et al. Interleukin-1β receptor antagonism prevents cognitive impairment following experimental bacterial meningitis. Curr. Neurovasc. Res. 12, 253–261 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4

    Chandran, A., Herbert, H., Misurski, D. & Santosham, M. Long-term sequelae of childhood bacterial meningitis: an underappreciated problem. Pediatr. Infect. Dis. J. 30, 3–6 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5

    Harden, L.M., Kent, S., Pittman, Q.J. & Roth, J. Fever and sickness behavior: friend or foe? Brain Behav. Immun. 50, 322–333 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6

    Lauritsen, A. & Oberg, B. Adjunctive corticosteroid therapy in bacterial meningitis. Scand. J. Infect. Dis. 27, 431–434 (1995).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7

    Bradshaw, M.J. & Venkatesan, A. Herpes simplex virus-1 encephalitis in adults: pathophysiology, diagnosis, and management. Neurotherapeutics 13, 493–508 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8

    Clarke, P. et al. Death receptor-mediated apoptotic signaling is activated in the brain following infection with West Nile virus in the absence of a peripheral immune response. J. Virol. 88, 1080–1089 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Gupta, K., Banerjee, A., Saggar, K., Ahluwalia, A. & Saggar, K. A prospective study of magnetic resonance imaging patterns of central nervous system infections in pediatric age group and young adults and their clinico-biochemical correlation. J. Pediatr. Neurosci. 11, 46–51 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10

    Ali, M., Safriel, Y., Sohi, J., Llave, A. & Weathers, S. West Nile virus infection: MR imaging findings in the nervous system. AJNR Am. J. Neuroradiol. 26, 289–297 (2005).

    PubMed  PubMed Central  Google Scholar 

  11. 11

    Szretter, K.J. et al. 2′-O methylation of the viral mRNA cap by West Nile virus evades ifit1-dependent and -independent mechanisms of host restriction in vivo. PLoS Pathog. 8, e1002698 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12

    Vasek, M.J. et al. A complement-microglial axis drives synapse loss during virus-induced memory impairment. Nature 534, 538–543 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13

    Leypoldt, F. et al. Herpes simplex virus-1 encephalitis can trigger anti-NMDA receptor encephalitis: case report. Neurology 81, 1637–1639 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14

    Kashyap, R.S. et al. Changes in cerebrospinal fluid cytokine expression in tuberculous meningitis patients with treatment. Neuroimmunomodulation 17, 333–339 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15

    Hong, S. et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 352, 712–716 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16

    Williams, J.L., Holman, D.W. & Klein, R.S. Chemokines in the balance: maintenance of homeostasis and protection at CNS barriers. Front. Cell. Neurosci. 8, 154 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Louveau, A. et al. Structural and functional features of central nervous system lymphatic vessels. Nature 523, 337–341 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18

    Iliff, J.J. et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid-β. Sci. Transl. Med. 4, 147ra111 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Detje, C.N. et al. Upon intranasal vesicular stomatitis virus infection, astrocytes in the olfactory bulb are important interferon-β producers that protect from lethal encephalitis. J. Virol. 89, 2731–2738 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Malone, K.E., Stohlman, S.A., Ramakrishna, C., Macklin, W. & Bergmann, C.C. Induction of class I antigen processing components in oligodendroglia and microglia during viral encephalomyelitis. Glia 56, 426–435 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21

    Engelhardt, B. et al. Nat. Immunol. 18, 123–131 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22

    Schwerk, C., Tenenbaum, T., Kim, K.S. & Schroten, H. The choroid plexus-a multi-role player during infectious diseases of the CNS. Front. Cell. Neurosci. 9, 80 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Steinemann, A., Galm, I., Chip, S., Nitsch, C. & Maly, I.P. Claudin-1, -2 and -3 are selectively expressed in the epithelia of the choroid plexus of the mouse from early development and into adulthood while claudin-5 is restricted to endothelial cells. Front. Neuroanat. 10, 16 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Oda, Y. & Nakanishi, I. Ultrastructure of the caudal portion of the fourth ventricular roof in the mouse. J. Comp. Neurol. 256, 299–307 (1987).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25

    Mildner, A. et al. Ly-6G+CCR2 myeloid cells rather than Ly-6ChighCCR2+ monocytes are required for the control of bacterial infection in the central nervous system. J. Immunol. 181, 2713–2722 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26

    Robinson, K., Taraktsoglou, M., Rowe, K.S., Wooldridge, K.G. & Ala'Aldeen, D.A. Secreted proteins from Neisseria meningitidis mediate differential human gene expression and immune activation. Cell. Microbiol. 6, 927–938 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27

    Banerjee, A. et al. Activation of brain endothelium by pneumococcal neuraminidase NanA promotes bacterial internalization. Cell. Microbiol. 12, 1576–1588 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28

    Ernst, J.D., Hartiala, K.T., Goldstein, I.M. & Sande, M.A. Complement (C5)-derived chemotactic activity accounts for accumulation of polymorphonuclear leukocytes in cerebrospinal fluid of rabbits with pneumococcal meningitis. Infect. Immun. 46, 81–86 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Flierl, M.A. et al. Phagocyte-derived catecholamines enhance acute inflammatory injury. Nature 449, 721–725 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30

    Aydin, N. et al. An experimental study of the neurophysical mechanisms of photophobia induced by subarachnoid hemorrhage. Neurosci. Lett. 630, 93–100 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31

    Quintana, E. et al. DNGR-1+ dendritic cells are located in meningeal membrane and choroid plexus of the noninjured brain. Glia 63, 2231–2248 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32

    Durrant, D.M., Daniels, B.P. & Klein, R.S. IL-1R1 signaling regulates CXCL12-mediated T cell localization and fate within the central nervous system during West Nile Virus encephalitis. J. Immunol. 193, 4095–4106 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33

    Clarkson, B.D. et al. CCR2-dependent dendritic cell accumulation in the central nervous system during early effector experimental autoimmune encephalomyelitis is essential for effector T cell restimulation in situ and disease progression. J. Immunol. 194, 531–541 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34

    Hikita, N. et al. Relationship between severity of aseptic meningitis and cerebrospinal fluid cytokine levels. Osaka City Med. J. 61, 63–71 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Jarvis, J.N. et al. Cerebrospinal fluid cytokine profiles predict risk of early mortality and immune reconstitution inflammatory syndrome in HIV-associated cryptococcal meningitis. PLoS Pathog. 11, e1004754 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Netea, M.G. et al. Two patients with cryptococcal meningitis and idiopathic CD4 lymphopenia: defective cytokine production and reversal by recombinant interferon-γ therapy. Clin. Infect. Dis. 39, e83–e87 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  37. 37

    Schläger, C. et al. Effector T-cell trafficking between the leptomeninges and the cerebrospinal fluid. Nature 530, 349–353 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Gadani, S.P., Cronk, J.C., Norris, G.T. & Kipnis, J. IL-4 in the brain: a cytokine to remember. J. Immunol. 189, 4213–4219 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39

    Schmidt, A.K. et al. Adjuvant granulocyte colony-stimulating factor therapy results in improved spatial learning and stimulates hippocampal neurogenesis in a mouse model of pneumococcal meningitis. J. Neuropathol. Exp. Neurol. 74, 85–94 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40

    Wippel, C. et al. Bacterial cytolysin during meningitis disrupts the regulation of glutamate in the brain, leading to synaptic damage. PLoS Pathog. 9, e1003380 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41

    Kreutzfeldt, M. et al. Neuroprotective intervention by interferon-γ blockade prevents CD8+ T cell-mediated dendrite and synapse loss. J. Exp. Med. 210, 2087–2103 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. 42

    Daneman, R. & Prat, A. The blood-brain barrier. Cold Spring Harb. Perspect. Biol. 7, a020412 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Kim, B.J. et al. Bacterial induction of Snail1 contributes to blood-brain barrier disruption. J. Clin. Invest. 125, 2473–2483 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  44. 44

    Daniels, B.P. et al. Viral pathogen-associated molecular patterns regulate blood-brain barrier integrity via competing innate cytokine signals. MBio 5, e01476–e14 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45

    Lazear, H.M. et al. Interferon-l restricts West Nile virus neuroinvasion by tightening the blood-brain barrier. Sci. Transl. Med. 7, 284ra59 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Bhattacharyya, S. et al. Enveloped viruses disable innate immune responses in dendritic cells by direct activation of TAM receptors. Cell Host Microbe 14, 136–147 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. 47

    Miner, J.J. et al. The TAM receptor Mertk protects against neuroinvasive viral infection by maintaining blood-brain barrier integrity. Nat. Med. 21, 1464–1472 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. 48

    Terrando, N. et al. Resolving postoperative neuroinflammation and cognitive decline. Ann. Neurol. 70, 986–995 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. 49

    Espinosa-Oliva, A.M. et al. Role of dopamine in the recruitment of immune cells to the nigro-striatal dopaminergic structures. Neurotoxicology 41, 89–101 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. 50

    Wen, J. et al. TNF-like weak inducer of apoptosis promotes blood brain barrier disruption and increases neuronal cell death in MRL/lpr mice. J. Autoimmun. 60, 40–50 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. 51

    Blank, T. et al. Brain endothelial- and epithelial-specific interferon receptor chain 1 drives virus-induced sickness behavior and cognitive impairment. Immunity 44, 901–912 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. 52

    Nair, S. & Diamond, M.S. Innate immune interactions within the central nervous system modulate pathogenesis of viral infections. Curr. Opin. Immunol. 36, 47–53 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. 53

    Nave, K.A. Myelination and support of axonal integrity by glia. Nature 468, 244–252 (2010).

    CAS  Article  Google Scholar 

  54. 54

    Eroglu, C. & Barres, B.A. Regulation of synaptic connectivity by glia. Nature 468, 223–231 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. 55

    Schitine, C., Nogaroli, L., Costa, M.R. & Hedin-Pereira, C. Astrocyte heterogeneity in the brain: from development to disease. Front. Cell. Neurosci. 9, 76 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Bardehle, S. et al. Live imaging of astrocyte responses to acute injury reveals selective juxtavascular proliferation. Nat. Neurosci. 16, 580–586 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. 57

    Kipp, M. et al. Brain-region-specific astroglial responses in vitro after LPS exposure. J. Mol. Neurosci. 35, 235–243 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. 58

    Morga, E., Faber, C. & Heuschling, P. Cultured astrocytes express regional heterogeneity of the immunoreactive phenotype under basal conditions and after γ-IFN induction. J. Neuroimmunol. 87, 179–184 (1998).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. 59

    McKimmie, C.S. & Graham, G.J. Astrocytes modulate the chemokine network in a pathogen-specific manner. Biochem. Biophys. Res. Commun. 394, 1006–1011 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. 60

    Vesce, S., Rossi, D., Brambilla, L. & Volterra, A. Glutamate release from astrocytes in physiological conditions and in neurodegenerative disorders characterized by neuroinflammation. Int. Rev. Neurobiol. 82, 57–71 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. 61

    Rossi, D. & Volterra, A. Astrocytic dysfunction: insights on the role in neurodegeneration. Brain Res. Bull. 80, 224–232 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. 62

    Kawai, T. & Akira, S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol. 11, 373–384 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. 63

    De Lucia, C. et al. Microglia regulate hippocampal neurogenesis during chronic neurodegeneration. Brain Behav. Immun. 55, 179–190 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. 64

    Djukic, M. et al. Circulating monocytes engraft in the brain, differentiate into microglia and contribute to the pathology following meningitis in mice. Brain 129, 2394–2403 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  65. 65

    Wang, Y. et al. IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat. Immunol. 13, 753–760 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. 66

    Michell-Robinson, M.A. et al. Roles of microglia in brain development, tissue maintenance and repair. Brain 138, 1138–1159 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  67. 67

    Lai, A.Y., Dhami, K.S., Dibal, C.D. & Todd, K.G. Neonatal rat microglia derived from different brain regions have distinct activation responses. Neuron Glia Biol. 7, 5–16 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  68. 68

    Carter, J.A., Neville, B.G. & Newton, C.R. Neuro-cognitive impairment following acquired central nervous system infections in childhood: a systematic review. Brain Res. Brain Res. Rev. 43, 57–69 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  69. 69

    Lehnardt, S. et al. Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4–dependent pathway. Proc. Natl. Acad. Sci. USA 100, 8514–8519 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  70. 70

    Scheld, W.M., Koedel, U., Nathan, B. & Pfister, H.W. Pathophysiology of bacterial meningitis: mechanism(s) of neuronal injury. J. Infect. Dis. 186 (suppl. 2), S225–S233 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  71. 71

    Grindborg, Ö., Naucler, P., Sjölin, J. & Glimåker, M. Adult bacterial meningitis—a quality registry study: earlier treatment and favourable outcome if initial management by infectious diseases physicians. Clin. Microbiol. Infect. 21, 560–566 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  72. 72

    Polfliet, M.M. et al. Meningeal and perivascular macrophages of the central nervous system play a protective role during bacterial meningitis. J. Immunol. 167, 4644–4650 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  73. 73

    Gerber, J. & Nau, R. Mechanisms of injury in bacterial meningitis. Curr. Opin. Neurol. 23, 312–318 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  74. 74

    Braun, J.S. et al. Neuroprotection by a caspase inhibitor in acute bacterial meningitis. Nat. Med. 5, 298–302 (1999).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. 75

    Geldhoff, M. et al. Inflammasome activation mediates inflammation and outcome in humans and mice with pneumococcal meningitis. BMC Infect. Dis. 13, 358 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  76. 76

    Aurangzeb, S., Badshah, M. & Khan, R. S. Chest radiographic findings in neurotuberculosis without pulmonary signs and symptoms. J. Coll. Physici. 18, 27–30 (2008).

    Google Scholar 

  77. 77

    Cherian, A. & Thomas, S.V. Central nervous system tuberculosis. Afr. Health Sci. 11, 116–127 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78

    Pyrgos, V., Seitz, A.E., Steiner, C.A., Prevots, D.R. & Williamson, P.R. Epidemiology of cryptococcal meningitis in the US: 1997–2009. PLoS One 8, e56269 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  79. 79

    Lu, C.H. et al. Assessing the chronic neuropsychologic sequelae of human immunodeficiency virus-negative cryptococcal meningitis by using diffusion tensor imaging. Am. J. Neuroradiol. 32, 1333–1339 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  80. 80

    Hoffmann, M., Muniz, J., Carroll, E. & De Villasante, J. Cryptococcal meningitis misdiagnosed as Alzheimer's disease: complete neurological and cognitive recovery with treatment. J. Alzheimers Dis. 16, 517–520 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  81. 81

    Bratton, E.W. et al. Comparison and temporal trends of three groups with cryptococcosis: HIV-infected, solid organ transplant, and HIV-negative/non-transplant. PLoS One 7, e43582 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  82. 82

    Garg, R.K. Tuberculosis of the central nervous system. Postgrad. Med. J. 75, 133–140 (1999).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  83. 83

    Pelc, S. & De Maertelaere, E. CSF cells in tuberculous meningitis. Humoral and cellular immune response. J. Neurol. Sci. 49, 223–228 (1981).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  84. 84

    Park, K.H. et al. Kinetics of T-cell-based assays on cerebrospinal fluid and peripheral blood mononuclear cells in patients with tuberculous meningitis. Korean J. Intern. Med. 29, 793–799 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  85. 85

    Jarvis, J.N. et al. The phenotype of the Cryptococcus-specific CD4+ memory T-cell response is associated with disease severity and outcome in HIV-associated cryptococcal meningitis. J. Infect. Dis. 207, 1817–1828 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  86. 86

    Panackal, A.A. et al. Paradoxical immune responses in non-HIV cryptococcal meningitis. PLoS Pathog. 11, e1004884 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. 87

    Browne, T.C. et al. IFN-γ Production by amyloid β-specific Th1 cells promotes microglial activation and increases plaque burden in a mouse model of Alzheimer's disease. J. Immunol. 190, 2241–2251 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  88. 88

    Papageorgiou, I.E. et al. TLR4-activated microglia require IFN-γ to induce severe neuronal dysfunction and death in situ. Proc. Natl. Acad. Sci. USA 113, 212–217 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  89. 89

    Bloomfield, P.S. et al. Microglial activity in people at ultra high risk of psychosis and in schizophrenia: an [11C]PBR28 PET brain imaging study. Am. J. Psychiatry 173, 44–52 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  90. 90

    Mettenleiter, T.C. Breaching the barrier—the nuclear envelope in virus infection. J. Mol. Biol. 428, 1949–1961 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  91. 91

    Granerod, J. et al. Causes of encephalitis and differences in their clinical presentations in England: a multicentre, population-based prospective study. Lancet Infect. Dis. 10, 835–844 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  92. 92

    Salimi, H., Cain, M.D. & Klein, R.S. Encephalitic arboviruses: emergence, clinical presentation, and neuropathogenesis. Neurotherapeutics 13, 514–534 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  93. 93

    Kramer, L.D., Styer, L.M. & Ebel, G.D. A global perspective on the epidemiology of West Nile virus. Annu. Rev. Entomol. 53, 61–81 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  94. 94

    Altfeld, M. & Gale, M. Jr. Innate immunity against HIV-1 infection. Nat. Immunol. 16, 554–562 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  95. 95

    Armangue, T. et al. Autoimmune post-herpes simplex encephalitis of adults and teenagers. Neurology 85, 1736–1743 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  96. 96

    John, C.C. et al. Global research priorities for infections that affect the nervous system. Nature 527, S178–S186 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  97. 97

    Stahl, J.P., Mailles, A., De Broucker, T., & Steering Committee and Investigators Group. Herpes simplex encephalitis and management of acyclovir in encephalitis patients in France. Epidemiol. Infect. 140, 372–381 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  98. 98

    Garcia, M.N. et al. Evaluation of prolonged fatigue post-West Nile virus infection and association of fatigue with elevated antiviral and proinflammatory cytokines. Viral Immunol. 27, 327–333 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  99. 99

    Sadek, J.R. et al. Persistent neuropsychological impairment associated with West Nile virus infection. J. Clin. Exp. Neuropsychol. 32, 81–87 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  100. 100

    Guerreiro, R. et al. TREM2 variants in Alzheimer's disease. N. Engl. J. Med. 368, 117–127 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  101. 101

    Chung, W.S., Welsh, C.A., Barres, B.A. & Stevens, B. Do glia drive synaptic and cognitive impairment in disease? Nat. Neurosci. 18, 1539–1545 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  102. 102

    Mehlhop, E. & Diamond, M.S. Protective immune responses against West Nile virus are primed by distinct complement activation pathways. J. Exp. Med. 203, 1371–1381 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  103. 103

    Schafer, D.P. et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74, 691–705 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  104. 104

    Tremblay, M.E., Lowery, R.L. & Majewska, A.K. Microglial interactions with synapses are modulated by visual experience. PLoS Biol. 8, e1000527 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. 105

    Mucke, L. et al. High-level neuronal expression of Aβ 1–42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J. Neurosci. 20, 4050–4058 (2000).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  106. 106

    Woollacott, I.O. & Rohrer, J.D. The clinical spectrum of sporadic and familial forms of frontotemporal dementia. J. Neurochem. 138 (suppl. 1), 6–31 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  107. 107

    Lui, H. et al. Progranulin deficiency promotes circuit-specific synaptic pruning by microglia via complement activation. Cell 165, 921–935 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  108. 108

    Sköldenberg, B. et al. Acyclovir versus vidarabine in herpes simplex encephalitis. Randomised multicentre study in consecutive Swedish patients. Lancet 2, 707–711 (1984).

    Article  PubMed  PubMed Central  Google Scholar 

  109. 109

    Sili, U., Kaya, A., Mert, A. & H.S.V.E.S. Group. Herpes simplex virus encephalitis: clinical manifestations, diagnosis and outcome in 106 adult patients. J. Clin. Virol. 60, 112–118 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  110. 110

    De Tiège, X. et al. Herpes simplex encephalitis relapses in children: differentiation of two neurologic entities. Neurology 61, 241–243 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  111. 111

    Leypoldt, F., Armangue, T. & Dalmau, J. Autoimmune encephalopathies. Ann. NY Acad. Sci. 1338, 94–114 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  112. 112

    Hughes, E.G. et al. Cellular and synaptic mechanisms of anti-NMDA receptor encephalitis. J. Neurosci. 30, 5866–5875 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  113. 113

    Planagumà, J. et al. Human N-methyl D-aspartate receptor antibodies alter memory and behaviour in mice. Brain 138, 94–109 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  114. 114

    Mikasova, L. et al. Disrupted surface cross-talk between NMDA and Ephrin-B2 receptors in anti-NMDA encephalitis. Brain 135, 1606–1621 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  115. 115

    Guo, M. et al. A Systematic meta-analysis of Toxoplasma gondii prevalence in food animals in the united states. Foodborne Pathog. Dis. 13, 109–118 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  116. 116

    Ueno, N. & Lodoen, M.B. From the blood to the brain: avenues of eukaryotic pathogen dissemination to the central nervous system. Curr. Opin. Microbiol. 26, 53–59 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  117. 117

    White, M.W., Radke, J.R. & Radke, J.B. Toxoplasma development —turn the switch on or off? Cell. Microbiol. 16, 466–472 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  118. 118

    Flegr, J., Lenochová, P., Hodný, Z. & Vondrová, M. Fatal attraction phenomenon in humans: cat odour attractiveness increased for toxoplasma-infected men while decreased for infected women. PLoS Negl. Trop. Dis. 5, e1389 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  119. 119

    Vyas, A., Kim, S.K., Giacomini, N., Boothroyd, J.C. & Sapolsky, R.M. Behavioral changes induced by Toxoplasma infection of rodents are highly specific to aversion of cat odors. Proc. Natl. Acad. Sci. USA 104, 6442–6447 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  120. 120

    Poirotte, C. et al. Morbid attraction to leopard urine in Toxoplasma-infected chimpanzees. Curr. Biol. 26, R98–R99 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  121. 121

    Blanchard, N., Dunay, I.R. & Schlüter, D. Persistence of Toxoplasma gondii in the central nervous system: a fine-tuned balance between the parasite, the brain and the immune system. Parasite Immunol. 37, 150–158 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  122. 122

    Landrith, T.A., Harris, T.H. & Wilson, E.H. Characteristics and critical function of CD8+ T cells in the Toxoplasma-infected brain. Semin. Immunopathol. 37, 261–270 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  123. 123

    Cabral, C.M. et al. Neurons are the primary target cell for the brain-tropic intracellular parasite Toxoplasma gondii. PLoS Pathog. 12, e1005447 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. 124

    David, C.N. et al. GLT-1-dependent disruption of CNS glutamate homeostasis and neuronal function by the protozoan parasite Toxoplasma gondii. PLoS Pathog. 12, e1005643 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. 125

    Parlog, A., Schlüter, D. & Dunay, I.R. Toxoplasma gondii-induced neuronal alterations. Parasite Immunol. 37, 159–170 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  126. 126

    Ingram, W.M., Goodrich, L.M., Robey, E.A. & Eisen, M.B. Mice infected with low-virulence strains of Toxoplasma gondii lose their innate aversion to cat urine, even after extensive parasite clearance. PLoS One 8, e75246 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  127. 127

    Mahmoudvand, H. et al. Toxoplasma gondii infection promotes neuroinflammation through cytokine networks and induced hyperalgesia in BALB/c mice. Inflammation 39, 405–412 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  128. 128

    Riazi, K. et al. Microglia-dependent alteration of glutamatergic synaptic transmission and plasticity in the hippocampus during peripheral inflammation. J. Neurosci. 35, 4942–4952 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  129. 129

    Wu, M.D., Montgomery, S.L., Rivera-Escalera, F., Olschowka, J.A. & O'Banion, M.K. Sustained IL-1β expression impairs adult hippocampal neurogenesis independent of IL-1 signaling in nestin+ neural precursor cells. Brain Behav. Immun. 32, 9–18 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  130. 130

    del Rey, A., Balschun, D., Wetzel, W., Randolf, A. & Besedovsky, H.O. A cytokine network involving brain-borne IL-1β, IL-1ra, IL-18, IL-6, and TNFα operates during long-term potentiation and learning. Brain Behav. Immun. 33, 15–23 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  131. 131

    Eells, J.B., Wilcots, J., Sisk, S. & Guo-Ross, S.X. NR4A gene expression is dynamically regulated in the ventral tegmental area dopamine neurons and is related to expression of dopamine neurotransmission genes. J. Mol. Neurosci. 46, 545–553 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  132. 132

    Grimes, D.A. et al. Translated mutation in the Nurr1 gene as a cause for Parkinson's disease. Mov. Disord. 21, 906–909 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  133. 133

    Wei, Y.M., Du, Y.L., Nie, Y.Q., Li, Y.Y. & Wan, Y.J. Nur-related receptor 1 gene polymorphisms and alcohol dependence in Mexican Americans. World J. Gastroenterol. 18, 5276–5282 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  134. 134

    Lallier, S.W., Graf, A.E., Waidyarante, G.R. & Rogers, L.K. Nurr1 expression is modified by inflammation in microglia. Neuroreport 27, 1120–1127 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  135. 135

    Eells, J.B. et al. Chronic Toxoplasma gondii in Nurr1-null heterozygous mice exacerbates elevated open field activity. PLoS One 10, e0119280 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. 136

    Hamdani, N. et al. Cognitive deterioration among bipolar disorder patients infected by Toxoplasma gondii is correlated to interleukin 6 levels. J. Affect. Disord. 179, 161–166 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  137. 137

    Ejlerskov, P. et al. Lack of neuronal IFN-β-IFNAR causes Lewy body- and Parkinson's disease-like dementia. Cell 163, 324–339 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  138. 138

    Filiano, A.J. et al. Unexpected role of interferon-γ in regulating neuronal connectivity and social behaviour. Nature 535, 425–429 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  139. 139

    Derecki, N.C. et al. Regulation of learning and memory by meningeal immunity: a key role for IL-4. J. Exp. Med. 207, 1067–1080 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  140. 140

    Jones, L. et al. Genetic evidence implicates the immune system and cholesterol metabolism in the aetiology of Alzheimer's disease. PLoS One 5, e13950 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. 141

    Kumar, D.K. et al. Amyloid-β peptide protects against microbial infection in mouse and worm models of Alzheimer's disease. Sci. Transl. Med. 8, 340ra72 (2016).

    Article  CAS  Google Scholar 

  142. 142

    Beatman, E.L. et al. Alpha-synuclein expression restricts RNA viral infections in the brain. J. Virol. 90, 2767–2782 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. 143

    Stojakovic, A. et al. Role of the IL-1 pathway in dopaminergic neurodegeneration and decreased voluntary movement. Mol. Neurobiol. http://dx.doi.org/10.1007/s12035-016-9988-x (2016).

  144. 144

    Prieto, G.A. et al. Synapse-specific IL-1 receptor subunit reconfiguration augments vulnerability to IL-1β in the aged hippocampus. Proc. Natl. Acad. Sci. USA 112, E5078–E5087 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  145. 145

    Cutando, L. et al. Microglial activation underlies cerebellar deficits produced by repeated cannabis exposure. J. Clin. Invest. 123, 2816–2831 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  146. 146

    Prajapati, P. et al. TNF-α regulates miRNA targeting mitochondrial complex-I and induces cell death in dopaminergic cells. Biochim. Biophys. Acta 1852, 451–461 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  147. 147

    Wu, Y. et al. Upregulation of tumor necrosis factor-α in nucleus accumbens attenuates morphine-induced rewarding in a neuropathic pain model. Biochem. Biophys. Res. Commun. 449, 502–507 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  148. 148

    Pettigrew, L.C., Kryscio, R.J. & Norris, C.M. The TNFα-transgenic rat: hippocampal synaptic integrity, cognition, function, and post-ischemic cell loss. PLoS One 11, e0154721 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. 149

    Stellwagen, D. & Malenka, R.C. Synaptic scaling mediated by glial TNF-α. Nature 440, 1054–1059 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  150. 150

    Wall, A.M., Mukandala, G., Greig, N.H. & O'Connor, J.J. Tumor necrosis factor-α potentiates long-term potentiation in the rat dentate gyrus after acute hypoxia. J. Neurosci. Res. 93, 815–829 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  151. 151

    Chen, Z. & Palmer, T.D. Differential roles of TNFR1 and TNFR2 signaling in adult hippocampal neurogenesis. Brain Behav. Immun. 30, 45–53 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  152. 152

    Habbas, S. et al. Neuroinflammatory TNFα impairs memory via astrocyte signaling. Cell 163, 1730–1741 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  153. 153

    Chien, C.H., Lee, M.J., Liou, H.C., Liou, H.H. & Fu, W.M. Microglia-derived cytokines/chemokines are involved in the enhancement of LPS-induced loss of nigrostriatal dopaminergic neurons in DJ-1 knockout mice. PLoS One 11, e0151569 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. 154

    Vlkolinský, R., Siggins, G.R., Campbell, I.L. & Krucker, T. Acute exposure to CXC chemokine ligand 10, but not its chronic astroglial production, alters synaptic plasticity in mouse hippocampal slices. J. Neuroimmunol. 150, 37–47 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. 155

    Li, L., Walker, T.L., Zhang, Y., Mackay, E.W. & Bartlett, P.F. Endogenous interferon-γ directly regulates neural precursors in the noninflammatory brain. J. Neurosci. 30, 9038–9050 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  156. 156

    Corbin, J.G. et al. Targeted CNS expression of interferon-γ in transgenic mice leads to hypomyelination, reactive gliosis, and abnormal cerebellar development. Mol. Cell. Neurosci. 7, 354–370 (1996).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  157. 157

    Hoyo-Becerra, C., Schlaak, J.F. & Hermann, D.M. Insights from interferon-α-related depression for the pathogenesis of depression associated with inflammation. Brain Behav. Immun. 42, 222–231 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  158. 158

    Zheng, L.S. et al. Mechanisms for interferon-α-induced depression and neural stem cell dysfunction. Stem Cell Reports. 3, 73–84 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  159. 159

    Yang, C.S. et al. Reactive oxygen species and p47phox activation are essential for the Mycobacterium tuberculosis-induced pro-inflammatory response in murine microglia. J. Neuroinflammation 4, 27 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. 160

    Koedel, U. et al. Experimental pneumococcal meningitis: cerebrovascular alterations, brain edema, and meningeal inflammation are linked to the production of nitric oxide. Ann. Neurol. 37, 313–323 (1995).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  161. 161

    Winkler, F., Koedel, U., Kastenbauer, S. & Pfister, H.W. Differential expression of nitric oxide synthases in bacterial meningitis: role of the inducible isoform for blood-brain barrier breakdown. J. Infect. Dis. 183, 1749–1759 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  162. 162

    Liu, X., Chauhan, V.S., Young, A.B. & Marriott, I. NOD2 mediates inflammatory responses of primary murine glia to Streptococcus pneumoniae. Glia 58, 839–847 (2010).

    PubMed  PubMed Central  Google Scholar 

  163. 163

    Sokolova, O. et al. Interaction of Neisseria meningitidis with human brain microvascular endothelial cells: role of MAP- and tyrosine kinases in invasion and inflammatory cytokine release. Cell. Microbiol. 6, 1153–1166 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  164. 164

    Schubert-Unkmeir, A., Sokolova, O., Panzner, U., Eigenthaler, M. & Frosch, M. Gene expression pattern in human brain endothelial cells in response to Neisseria meningitidis. Infect. Immun. 75, 899–914 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  165. 165

    Steinmann, U. et al. Transmigration of polymorphnuclear neutrophils and monocytes through the human blood-cerebrospinal fluid barrier after bacterial infection in vitro. J. Neuroinflammation 10, 31 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  166. 166

    Cooley, I.D., Chauhan, V.S., Donneyz, M.A. & Marriott, I. Astrocytes produce IL-19 in response to bacterial challenge and are sensitive to the immunosuppressive effects of this IL-10 family member. Glia 62, 818–828 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  167. 167

    Waage, A. et al. Local production of tumor necrosis factor alpha, interleukin 1, and interleukin 6 in meningococcal meningitis. Relation to the inflammatory response. J. Exp. Med. 170, 1859–1867 (1989).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  168. 168

    Vu, K., Eigenheer, R.A., Phinney, B.S. & Gelli, A. Cryptococcus neoformans promotes its transmigration into the central nervous system by inducing molecular and cellular changes in brain endothelial cells. Infect. Immun. 81, 3139–3147 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  169. 169

    Lee, S.C., Dickson, D.W., Brosnan, C.F. & Casadevall, A. Human astrocytes inhibit Cryptococcus neoformans growth by a nitric oxide-mediated mechanism. J. Exp. Med. 180, 365–369 (1994).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  170. 170

    Liang, C.C. et al. Human endothelial cell activation and apoptosis induced by enterovirus 71 infection. J. Med. Virol. 74, 597–603 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  171. 171

    Schneider, H. et al. Chemotaxis of T-cells after infection of human choroid plexus papilloma cells with Echovirus 30 in an in vitro model of the blood-cerebrospinal fluid barrier. Virus Res. 170, 66–74 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  172. 172

    Wang, C. et al. Intrinsic apoptosis and proinflammatory cytokines regulated in human astrocytes infected with enterovirus 71. J. Gen. Virol. 96, 3010–3022 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  173. 173

    Reinert, L.S. et al. TLR3 deficiency renders astrocytes permissive to herpes simplex virus infection and facilitates establishment of CNS infection in mice. J. Clin. Invest. 122, 1368–1376 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  174. 174

    Liu, Z. et al. HSV-1 activates NF-kB in mouse astrocytes and increases TNF-α and IL-6 expression via Toll-like receptor 3. Neurol. Res. 35, 755–762 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  175. 175

    Fitting, S. et al. Regional heterogeneity and diversity in cytokine and chemokine production by astroglia: differential responses to HIV-1 Tat, gp120, and morphine revealed by multiplex analysis. J. Proteome Res. 9, 1795–1804 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  176. 176

    Wacher, C. et al. Coordinated regulation and widespread cellular expression of interferon-stimulated genes (ISG) ISG-49, ISG-54, and ISG-56 in the central nervous system after infection with distinct viruses. J. Virol. 81, 860–871 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  177. 177

    Cho, H. et al. Differential innate immune response programs in neuronal subtypes determine susceptibility to infection in the brain by positive-stranded RNA viruses. Nat. Med. 19, 458–464 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Williams for critical reading of the manuscript. Funding for this research was provided by the US National Institutes of Health grants T32 HL007317 (N.H.), R01 NS052632, P01 NS059560, R01 AI126909, R21AI114549 and U19 AI083019 (R.S.K.) and a grant from the National Multiple Sclerosis society (R.S.K.).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Robyn S Klein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Klein, R., Garber, C. & Howard, N. Infectious immunity in the central nervous system and brain function. Nat Immunol 18, 132–141 (2017). https://doi.org/10.1038/ni.3656

Download citation

Further reading

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing