Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neuroimmune regulation during intestinal development and homeostasis

Abstract

Interactions between the nervous system and immune system are required for organ function and homeostasis. Evidence suggests that enteric neurons and intestinal immune cells share common regulatory mechanisms and can coordinate their responses to developmental challenges and environmental aggressions. These discoveries shed light on the physiology of system interactions and open novel perspectives for therapy designs that target underappreciated neurological–immunological commonalities. Here we highlight findings that address the importance of neuroimmune cell units (NICUs) in intestinal development, homeostasis and disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Common regulatory mechanisms of neuronal and lymphoid organogenesis in the gut.
Figure 2: The neuron-macrophage axis in the intestinal myenteric plexus.
Figure 3: Environmental sensing by glial cells and glia-ILC3 units.

Similar content being viewed by others

References

  1. Veiga-Fernandes, H. & Mucida, D. Neuroimmune interactions at barrier surfaces. Cell 165, 801–811 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tracey, K.J. Reflex control of immunity. Nat. Rev. Immunol. 9, 418–428 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ordovas-Montanes, J. et al. The regulation of immunological processes by peripheral neurons in homeostasis and disease. Trends Immunol. 36, 578–604 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Talbot, S., Foster, S.L. & Woolf, C.J. Neuroimmunity: physiology and pathology. Annu. Rev. Immunol. 34, 421–447 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Margolis, K.G., Gershon, M.D. & Bogunovic, M. Cellular organization of neuroimmune interactions in the gastrointestinal tract. Trends Immunol. 37, 487–501 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hanoun, M., Maryanovich, M., Arnal-Estapé, A. & Frenette, P.S. Neural regulation of hematopoiesis, inflammation, and cancer. Neuron 86, 360–373 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kipnis, J. Multifaceted interactions between adaptive immunity and the central nervous system. Science 353, 766–771 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Uesaka, T., Young, H.M., Pachnis, V. & Enomoto, H. Development of the intrinsic and extrinsic innervation of the gut. Dev. Biol. 417, 158–167 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Furness, J.B., Rivera, L.R., Cho, H.J., Bravo, D.M. & Callaghan, B. The gut as a sensory organ. Nat. Rev. Gastroenterol. Hepatol. 10, 729–740 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Phillips, R.J. & Powley, T.L. Innervation of the gastrointestinal tract: patterns of aging. Auton. Neurosci. 136, 1–19 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Boesmans, W., Lasrado, R., Vanden Berghe, P. & Pachnis, V. Heterogeneity and phenotypic plasticity of glial cells in the mammalian enteric nervous system. Glia 63, 229–241 (2015).

    Article  PubMed  Google Scholar 

  12. Gulbransen, B.D. & Sharkey, K.A. Novel functional roles for enteric glia in the gastrointestinal tract. Nat. Rev. Gastroenterol. Hepatol. 9, 625–632 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Kabouridis, P.S. et al. Microbiota controls the homeostasis of glial cells in the gut lamina propria. Neuron 85, 289–295 (2015).By genetic lineage tracing, the authors reveal that the network of mucosal glial cells is continuously renewed, in a microbiota-dependent manner, by incoming glial cells that originate in the plexi of the gut wall.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nijhuis, L.E., Olivier, B.J. & de Jonge, W.J. Neurogenic regulation of dendritic cells in the intestine. Biochem. Pharmacol. 80, 2002–2008 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Van Landeghem, L. et al. Enteric glia promote intestinal mucosal healing via activation of focal adhesion kinase and release of proEGF. Am. J. Physiol. Gastrointest. Liver Physiol. 300, G976–G987 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Le Douarin, N.M. & Teillet, M.A. The migration of neural crest cells to the wall of the digestive tract in avian embryo. J. Embryol. Exp. Morphol. 30, 31–48 (1973).

    CAS  PubMed  Google Scholar 

  17. Yntema, C.L. & Hammond, W.S. The origin of intrinsic ganglia of trunk viscera from vagal neural crest in the chick embryo. J. Comp. Neurol. 101, 515–541 (1954).

    Article  CAS  PubMed  Google Scholar 

  18. Druckenbrod, N.R. & Epstein, M.L. The pattern of neural crest advance in the cecum and colon. Dev. Biol. 287, 125–133 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Young, H.M. et al. Dynamics of neural crest-derived cell migration in the embryonic mouse gut. Dev. Biol. 270, 455–473 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Young, H.M. et al. Colonizing while migrating: how do individual enteric neural crest cells behave? BMC Biol. 12, 23 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Avetisyan, M., Schill, E.M. & Heuckeroth, R.O. Building a second brain in the bowel. J. Clin. Invest. 125, 899–907 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hao, M.M. & Young, H.M. Development of enteric neuron diversity. J. Cell. Mol. Med. 13, 1193–1210 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Laranjeira, C. et al. Glial cells in the mouse enteric nervous system can undergo neurogenesis in response to injury. J. Clin. Invest. 121, 3412–3424 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Young, H.M., Bergner, A.J. & Müller, T. Acquisition of neuronal and glial markers by neural crest-derived cells in the mouse intestine. J. Comp. Neurol. 456, 1–11 (2003).

    Article  PubMed  Google Scholar 

  25. Niederreither, K. et al. The regional pattern of retinoic acid synthesis by RALDH2 is essential for the development of posterior pharyngeal arches and the enteric nervous system. Development 130, 2525–2534 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Patel, A. et al. Differential RET signaling pathways drive development of the enteric lymphoid and nervous systems. Sci. Signal. 5, ra55 (2012).

    Article  PubMed  CAS  Google Scholar 

  27. Veiga-Fernandes, H. et al. Tyrosine kinase receptor RET is a key regulator of Peyer's patch organogenesis. Nature 446, 547–551 (2007).This study identifies a population of RET-expressing CD11c+ hematopoietic cells in the fetal intestine. Activation of RET drives enteric lymphoid organogenesis, while lack of RET results in PP developmental failure.

    Article  CAS  PubMed  Google Scholar 

  28. Ferreira, M., Domingues, R.G. & Veiga-Fernandes, H. Stroma cell priming in enteric lymphoid organ morphogenesis. Front. Immunol. 3, 219 (2012).

    PubMed  PubMed Central  Google Scholar 

  29. van de Pavert, S.A. & Mebius, R.E. New insights into the development of lymphoid tissues. Nat. Rev. Immunol. 10, 664–674 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Ohno, H. Intestinal M cells. J. Biochem. 159, 151–160 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Reboldi, A. & Cyster, J.G. Peyer's patches: organizing B-cell responses at the intestinal frontier. Immunol. Rev. 271, 230–245 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mebius, R.E., Rennert, P. & Weissman, I.L. Developing lymph nodes collect CD4+CD3 LTβ+ cells that can differentiate to APC, NK cells, and follicular cells but not T or B cells. Immunity 7, 493–504 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Artis, D. & Spits, H. The biology of innate lymphoid cells. Nature 517, 293–301 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Honda, K. et al. Molecular basis for hematopoietic/mesenchymal interaction during initiation of Peyer's patch organogenesis. J. Exp. Med. 193, 621–630 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yokota, Y. et al. Development of peripheral lymphoid organs and natural killer cells depends on the helix-loop-helix inhibitor Id2. Nature 397, 702–706 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Xu, W. et al. NFIL3 orchestrates the emergence of common helper innate lymphoid cell precursors. Cell Rep. 10, 2043–2054 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Kurebayashi, S. et al. Retinoid-related orphan receptor γ (RORγ) is essential for lymphoid organogenesis and controls apoptosis during thymopoiesis. Proc. Natl. Acad. Sci. USA 97, 10132–10137 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Eberl, G. et al. An essential function for the nuclear receptor RORγ(t) in the generation of fetal lymphoid tissue inducer cells. Nat. Immunol. 5, 64–73 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Sun, Z. et al. Requirement for RORγ in thymocyte survival and lymphoid organ development. Science 288, 2369–2373 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. van de Pavert, S.A. et al. Maternal retinoids control type 3 innate lymphoid cells and set the offspring immunity. Nature 508, 123–127 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. van de Pavert, S.A. et al. Chemokine CXCL13 is essential for lymph node initiation and is induced by retinoic acid and neuronal stimulation. Nat. Immunol. 10, 1193–1199 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sato, Y. & Heuckeroth, R.O. Retinoic acid regulates murine enteric nervous system precursor proliferation, enhances neuronal precursor differentiation, and reduces neurite growth in vitro. Dev. Biol. 320, 185–198 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kioussis, D. & Pachnis, V. Immune and nervous systems: more than just a superficial similarity? Immunity 31, 705–710 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Louveau, A. et al. Structural and functional features of central nervous system lymphatic vessels. Nature 523, 337–341 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Llorens-Bobadilla, E. et al. Single-cell transcriptomics reveals a population of dormant neural stem cells that become activated upon brain injury. Cell Stem Cell 17, 329–340 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Filiano, A.J. et al. Unexpected role of interferon-γ in regulating neuronal connectivity and social behaviour. Nature 535, 425–429 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Arendt, D. The evolution of cell types in animals: emerging principles from molecular studies. Nat. Rev. Genet. 9, 868–882 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Schuchardt, A., D'Agati, V., Larsson-Blomberg, L., Costantini, F. & Pachnis, V. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature 367, 380–383 (1994).

    Article  CAS  PubMed  Google Scholar 

  49. Almeida, A.R. et al. RET/GFRα signals are dispensable for thymic T cell development in vivo. PLoS One 7, e52949 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Almeida, A.R. et al. The neurotrophic factor receptor RET regulates IL-10 production by in vitro polarised T helper 2 cells. Eur. J. Immunol. 44, 3605–3613 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Fonseca-Pereira, D. et al. The neurotrophic factor receptor RET drives haematopoietic stem cell survival and function. Nature 514, 98–101 (2014).This work shows that RET drives HSC survival, which indicates that neurons and hematopoietic stem cells share survival commonalities.

    Article  CAS  PubMed  Google Scholar 

  52. Airaksinen, M.S. & Saarma, M. The GDNF family: signalling, biological functions and therapeutic value. Nat. Rev. Neurosci. 3, 383–394 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Mulligan, L.M. RET revisited: expanding the oncogenic portfolio. Nat. Rev. Cancer 14, 173–186 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Ibiza, S. et al. Glial-cell-derived neuroregulators control type 3 innate lymphoid cells and gut defence. Nature 535, 440–443 (2016).This work demonstrates that ILC3s sense their environment and control gut defense as part of a glial–ILC3–epithelial cell unit orchestrated by neurotrophic factors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Heanue, T.A. & Pachnis, V. Ret isoform function and marker gene expression in the enteric nervous system is conserved across diverse vertebrate species. Mech. Dev. 125, 687–699 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Taraviras, S. et al. Signalling by the RET receptor tyrosine kinase and its role in the development of the mammalian enteric nervous system. Development 126, 2785–2797 (1999).

    CAS  PubMed  Google Scholar 

  57. Uesaka, T. & Enomoto, H. Neural precursor death is central to the pathogenesis of intestinal aganglionosis in Ret hypomorphic mice. J. Neurosci. 30, 5211–5218 (2010).By genetic approaches, this study demonstrates that RET survival signals are the main drivers of ENS formation. Accordingly, inhibition of cell death allows the normal morphological and functional formation of ENS in RET-deficient mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gianino, S., Grider, J.R., Cresswell, J., Enomoto, H. & Heuckeroth, R.O. GDNF availability determines enteric neuron number by controlling precursor proliferation. Development 130, 2187–2198 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Katayama, Y. et al. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 124, 407–421 (2006).This pioneering work demonstrates that HSC mobilization is controlled by sympathetic nervous cues, via norepinephrine signals.

    Article  CAS  PubMed  Google Scholar 

  60. Méndez-Ferrer, S. et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466, 829–834 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Méndez-Ferrer, S., Lucas, D., Battista, M. & Frenette, P.S. Haematopoietic stem cell release is regulated by circadian oscillations. Nature 452, 442–447 (2008).

    Article  PubMed  CAS  Google Scholar 

  62. Spiegel, A. et al. Catecholaminergic neurotransmitters regulate migration and repopulation of immature human CD34+ cells through Wnt signaling. Nat. Immunol. 8, 1123–1131 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Vantourout, P. & Hayday, A. Six-of-the-best: unique contributions of γδ T cells to immunology. Nat. Rev. Immunol. 13, 88–100 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cheroutre, H., Lambolez, F. & Mucida, D. The light and dark sides of intestinal intraepithelial lymphocytes. Nat. Rev. Immunol. 11, 445–456 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sawa, S. et al. Lineage relationship analysis of RORγt+ innate lymphoid cells. Science 330, 665–669 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Atarashi, K. et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331, 337–341 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Round, J.L. et al. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science 332, 974–977 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Geuking, M.B. et al. Intestinal bacterial colonization induces mutualistic regulatory T cell responses. Immunity 34, 794–806 (2011).

    Article  CAS  PubMed  Google Scholar 

  69. Veldhoen, M. & Veiga-Fernandes, H. Feeding immunity: skepticism, delicacies and delights. Nat. Immunol. 16, 215–219 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Goverse, G. et al. Vitamin A controls the presence of RORγ+ innate lymphoid cells and lymphoid tissue in the small intestine. J. Immunol. 196, 5148–5155 (2016).

    Article  CAS  PubMed  Google Scholar 

  71. Spencer, S.P. et al. Adaptation of innate lymphoid cells to a micronutrient deficiency promotes type 2 barrier immunity. Science 343, 432–437 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Iwata, M. Retinoic acid production by intestinal dendritic cells and its role in T-cell trafficking. Semin. Immunol. 21, 8–13 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Kim, M.H., Taparowsky, E.J. & Kim, C.H. Retinoic acid differentially regulates the migration of innate lymphoid cell subsets to the gut. Immunity 43, 107–119 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hall, J.A. et al. Essential role for retinoic acid in the promotion of CD4+ T cell effector responses via retinoic acid receptor alpha. Immunity 34, 435–447 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mucida, D. et al. Retinoic acid can directly promote TGF-β-mediated Foxp3+ Treg cell conversion of naive T cells. Immunity 30, 471–472, author reply 472–473 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Mora, J.R. & von Andrian, U.H. Role of retinoic acid in the imprinting of gut-homing IgA-secreting cells. Semin. Immunol. 21, 28–35 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Veldhoen, M. et al. The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature 453, 106–109 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Kiss, E.A. et al. Natural aryl hydrocarbon receptor ligands control organogenesis of intestinal lymphoid follicles. Science 334, 1561–1565 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. Li, Y. et al. Exogenous stimuli maintain intraepithelial lymphocytes via aryl hydrocarbon receptor activation. Cell 147, 629–640 (2011).

    Article  CAS  PubMed  Google Scholar 

  80. Zaid, A. et al. Persistence of skin-resident memory T cells within an epidermal niche. Proc. Natl. Acad. Sci. USA 111, 5307–5312 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Liu, M.T., Kuan, Y.H., Wang, J., Hen, R. & Gershon, M.D. 5-HT4 receptor-mediated neuroprotection and neurogenesis in the enteric nervous system of adult mice. J. Neurosci. 29, 9683–9699 (2009).This study demonstrates that in addition to the fetal period of enteric neural development, adult enteric neurogenesis is critical for ENS growth and maintenance via 5-HT receptors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Joseph, N.M. et al. Enteric glia are multipotent in culture but primarily form glia in the adult rodent gut. J. Clin. Invest. 121, 3398–3411 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Roberts, R.R., Murphy, J.F., Young, H.M. & Bornstein, J.C. Development of colonic motility in the neonatal mouse-studies using spatiotemporal maps. Am. J. Physiol. Gastrointest. Liver Physiol. 292, G930–G938 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Kabouridis, P.S. & Pachnis, V. Emerging roles of gut microbiota and the immune system in the development of the enteric nervous system. J. Clin. Invest. 125, 956–964 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Pham, T.D., Gershon, M.D. & Rothman, T.P. Time of origin of neurons in the murine enteric nervous system: sequence in relation to phenotype. J. Comp. Neurol. 314, 789–798 (1991).

    Article  CAS  PubMed  Google Scholar 

  86. Collins, J., Borojevic, R., Verdu, E.F., Huizinga, J.D. & Ratcliffe, E.M. Intestinal microbiota influence the early postnatal development of the enteric nervous system. Neurogastroenterol. Motil. 26, 98–107 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. Foster, J.A. & McVey Neufeld, K.A. Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci. 36, 305–312 (2013).

    Article  CAS  PubMed  Google Scholar 

  88. McVey Neufeld, K.A., Mao, Y.K., Bienenstock, J., Foster, J.A. & Kunze, W.A. The microbiome is essential for normal gut intrinsic primary afferent neuron excitability in the mouse. Neurogastroenterol. Motil. 25, 183–e88 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Anitha, M., Vijay-Kumar, M., Sitaraman, S.V., Gewirtz, A.T. & Srinivasan, S. Gut microbial products regulate murine gastrointestinal motility via Toll-like receptor 4 signaling. Gastroenterology 143, 1006–1016 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. Barajon, I. et al. Toll-like receptors 3, 4, and 7 are expressed in the enteric nervous system and dorsal root ganglia. J. Histochem. Cytochem. 57, 1013–1023 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Meseguer, V. et al. TRPA1 channels mediate acute neurogenic inflammation and pain produced by bacterial endotoxins. Nat. Commun. 5, 3125 (2014).

    Article  PubMed  CAS  Google Scholar 

  92. Brun, P. et al. Toll-like receptor 2 regulates intestinal inflammation by controlling integrity of the enteric nervous system. Gastroenterology 145, 1323–1333 (2013).This study demonstrates that enteric neurons and glial cells express TLR2 and that the absence of TLR2 signaling results in deficits in the ENS architecture, neurochemical profile and propensity to inflammation.

    Article  CAS  PubMed  Google Scholar 

  93. Brun, P. et al. Toll like receptor-2 regulates production of glial-derived neurotrophic factors in murine intestinal smooth muscle cells. Mol. Cell. Neurosci. 68, 24–35 (2015).

    Article  CAS  PubMed  Google Scholar 

  94. Rumio, C. et al. Activation of smooth muscle and myenteric plexus cells of jejunum via Toll-like receptor 4. J. Cell. Physiol. 208, 47–54 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805–820 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Muller, P.A. et al. Crosstalk between muscularis macrophages and enteric neurons regulates gastrointestinal motility. Cell 158, 300–313 (2014).This work demonstrates that macrophages in the muscularis externa regulate peristaltic activity of the colon via BMP2 in a microbiota-dependent manner.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gabanyi, I. et al. Neuroimmune interactions drive tissue programming in intestinal macrophages. Cell 164, 378–391 (2016).This study identifies macrophage-neuron interactions in the myenteric plexus that induce rapid tissue-protective responses to luminal perturbations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Schemann, M. & Camilleri, M. Functions and imaging of mast cell and neural axis of the gut. Gastroenterology 144, 698–704 (2013).

    Article  CAS  PubMed  Google Scholar 

  99. Rosas-Ballina, M. et al. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 334, 98–101 (2011).This study demonstrates that action potentials originating in the vagus nerve regulate T cells in the spleen, which in turn produce the acetylcholine needed to control innate immune responses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wang, H. et al. Nicotinic acetylcholine receptor α7 subunit is an essential regulator of inflammation. Nature 421, 384–388 (2003).This study shows that the nicotinic acetylcholine receptor is essential for inhibiting cytokine synthesis by the cholinergic anti-inflammatory pathway, notably via inhibition of macrophage release of tumor-necrosis factor.

    Article  CAS  PubMed  Google Scholar 

  101. de Jonge, W.J. et al. Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway. Nat. Immunol. 6, 844–851 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. van Diest, S.A., Stanisor, O.I., Boeckxstaens, G.E., de Jonge, W.J. & van den Wijngaard, R.M. Relevance of mast cell-nerve interactions in intestinal nociception. Biochim. Biophys. Acta 1822, 74–84 (2012).

    Article  CAS  PubMed  Google Scholar 

  103. Stead, R.H. et al. Intestinal mucosal mast cells in normal and nematode-infected rat intestines are in intimate contact with peptidergic nerves. Proc. Natl. Acad. Sci. USA 84, 2975–2979 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Stead, R.H., Dixon, M.F., Bramwell, N.H., Riddell, R.H. & Bienenstock, J. Mast cells are closely apposed to nerves in the human gastrointestinal mucosa. Gastroenterology 97, 575–585 (1989).

    Article  CAS  PubMed  Google Scholar 

  105. Liu, Y.A. et al. 3-D imaging, illustration, and quantitation of enteric glial network in transparent human colon mucosa. Neurogastroenterol. Motil. 25, e324–e338 (2013).

    Article  CAS  PubMed  Google Scholar 

  106. Neunlist, M. et al. The digestive neuronal-glial-epithelial unit: a new actor in gut health and disease. Nat. Rev. Gastroenterol. Hepatol. 10, 90–100 (2013).

    Article  CAS  PubMed  Google Scholar 

  107. Renz, H., Brandtzaeg, P. & Hornef, M. The impact of perinatal immune development on mucosal homeostasis and chronic inflammation. Nat. Rev. Immunol. 12, 9–23 (2011).

    Article  PubMed  CAS  Google Scholar 

  108. Sharkey, K.A. Emerging roles for enteric glia in gastrointestinal disorders. J. Clin. Invest. 125, 918–925 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Cirillo, C. et al. Increased mucosal nitric oxide production in ulcerative colitis is mediated in part by the enteroglial-derived S100B protein. Neurogastroenterol. Motil. 21, 1209–e112 (2009).

    Article  CAS  PubMed  Google Scholar 

  110. Cirillo, C. et al. Proinflammatory stimuli activates human-derived enteroglial cells and induces autocrine nitric oxide production. Neurogastroenterol. Motil. 23, e372–e382 (2011).

    Article  CAS  PubMed  Google Scholar 

  111. Esposito, G. et al. Enteric glial-derived S100B protein stimulates nitric oxide production in celiac disease. Gastroenterology 133, 918–925 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Xiao, W.D. et al. The protective effect of enteric glial cells on intestinal epithelial barrier function is enhanced by inhibiting inducible nitric oxide synthase activity under lipopolysaccharide stimulation. Mol. Cell. Neurosci. 46, 527–534 (2011).

    Article  CAS  PubMed  Google Scholar 

  113. Geboes, K. et al. Major histocompatibility class II expression on the small intestinal nervous system in Crohn's disease. Gastroenterology 103, 439–447 (1992).

    Article  CAS  PubMed  Google Scholar 

  114. Koretz, K., Momburg, F., Otto, H.F. & Möller, P. Sequential induction of MHC antigens on autochthonous cells of ileum affected by Crohn's disease. Am. J. Pathol. 129, 493–502 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Bush, T.G. et al. Fulminant jejuno-ileitis following ablation of enteric glia in adult transgenic mice. Cell 93, 189–201 (1998).

    Article  CAS  PubMed  Google Scholar 

  116. Cornet, A. et al. Enterocolitis induced by autoimmune targeting of enteric glial cells: a possible mechanism in Crohn's disease? Proc. Natl. Acad. Sci. USA 98, 13306–13311 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Klose, C.S. & Artis, D. Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis. Nat. Immunol. 17, 765–774 (2016).

    Article  CAS  PubMed  Google Scholar 

  118. Satoh-Takayama, N. et al. The chemokine receptor CXCR6 controls the functional topography of interleukin-22 producing intestinal innate lymphoid cells. Immunity 41, 776–788 (2014).

    Article  CAS  PubMed  Google Scholar 

  119. Rankin, L.C. et al. Complementarity and redundancy of IL-22-producing innate lymphoid cells. Nat. Immunol. 17, 179–186 (2016).

    Article  CAS  PubMed  Google Scholar 

  120. Okada, S. et al. Immunodeficiencies. Impairment of immunity to Candida and Mycobacterium in humans with bi-allelic RORC mutations. Science 349, 606–613 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Vély, F. et al. Evidence of innate lymphoid cell redundancy in humans. Nat. Immunol. 17, 1291–1299 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Fernandes, S.M. et al. Enteric mucosa integrity in the presence of a preserved innate interleukin 22 compartment in HIV type 1-treated individuals. J. Infect. Dis. 210, 630–640 (2014).

    Article  CAS  PubMed  Google Scholar 

  123. Sawa, S. et al. RORγt+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota. Nat. Immunol. 12, 320–326 (2011).

    Article  CAS  PubMed  Google Scholar 

  124. Alexander, G.M. et al. Remote control of neuronal activity in transgenic mice expressing evolved G protein-coupled receptors. Neuron 63, 27–39 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Prakash, R. et al. Two-photon optogenetic toolbox for fast inhibition, excitation and bistable modulation. Nat. Methods 9, 1171–1179 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Yano, J.M. et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161, 264–276 (2015).This study demonstrates that the intestinal microbiota modules host serotonin, which highlights a key role for host-microbiota interactions in regulating systemic serotonin-related processes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the members of our laboratories for discussions. Supported by the European Research Council (647274 for the H.V.-F. laboratory), the European Union (H.V.-F. laboratory), the Chron's and Colitis Foundation of America (H.V.-F. laboratory), the Kenneth Rainin Foundation (H.V.-F. laboratory), Fundação para a Ciência e Tecnologia, Portugal (H.V.-F. laboratory), the Medical Research Council (V.P. laboratory), the Francis Crick Institute (V.P. laboratory) and the Biotechnology and Biological Sciences Research Council (V.P. laboratory).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Henrique Veiga-Fernandes or Vassilis Pachnis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veiga-Fernandes, H., Pachnis, V. Neuroimmune regulation during intestinal development and homeostasis. Nat Immunol 18, 116–122 (2017). https://doi.org/10.1038/ni.3634

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.3634

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing