Regulation and function of the cGAS–STING pathway of cytosolic DNA sensing

Abstract

The recognition of microbial nucleic acids is a major mechanism by which the immune system detects pathogens. Cyclic GMP-AMP (cGAMP) synthase (cGAS) is a cytosolic DNA sensor that activates innate immune responses through production of the second messenger cGAMP, which activates the adaptor STING. The cGAS–STING pathway not only mediates protective immune defense against infection by a large variety of DNA-containing pathogens but also detects tumor-derived DNA and generates intrinsic antitumor immunity. However, aberrant activation of the cGAS pathway by self DNA can also lead to autoimmune and inflammatory disease. Thus, the cGAS pathway must be properly regulated. Here we review the recent advances in understanding of the cGAS–STING pathway, focusing on the regulatory mechanisms and roles of this pathway in heath and disease.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The cGAS–STING pathway of cytosolic DNA sensing.

Debbie Maizels/Nature PublishingGroup

Figure 2: Regulation of the cGAS–STING pathway.

Debbie Maizels/Nature PublishingGroup

Figure 3: Role of the cGAS–STING pathway in antitumor immunity.

Debbie Maizels/Nature PublishingGroup

References

  1. 1

    Pandey, S., Kawai, T. & Akira, S. Microbial sensing by Toll-like receptors and intracellular nucleic acid sensors. Cold Spring Harb. Perspect. Biol. 7, a016246 (2014).

    PubMed  Google Scholar 

  2. 2

    Broz, P. & Dixit, V.M. Inflammasomes: mechanism of assembly, regulation and signalling. Nat. Rev. Immunol. 16, 407–420 (2016).

    CAS  PubMed  Google Scholar 

  3. 3

    Yoneyama, M., Onomoto, K., Jogi, M., Akaboshi, T. & Fujita, T. Viral RNA detection by RIG-I-like receptors. Curr. Opin. Immunol. 32, 48–53 (2015).

    CAS  PubMed  Google Scholar 

  4. 4

    Cai, X., Chiu, Y.H. & Chen, Z.J. The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling. Mol. Cell 54, 289–296 (2014).

    CAS  PubMed  Google Scholar 

  5. 5

    Land, W.G. Innate Alloimmunity, Part 1: Innate Immunity and Host Defense (Pabst Science Publishers, 2011).

    Google Scholar 

  6. 6

    Sun, L., Wu, J., Du, F., Chen, X. & Chen, Z.J. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339, 786–791 (2013).

    CAS  Google Scholar 

  7. 7

    Zhang, X. et al. The cytosolic DNA sensor cGAS forms an oligomeric complex with DNA and undergoes switch-like conformational changes in the activation loop. Cell Rep. 6, 421–430 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8

    Li, X. et al. Cyclic GMP-AMP synthase is activated by double-stranded DNA-induced oligomerization. Immunity 39, 1019–1031 (2013).

    CAS  Google Scholar 

  9. 9

    Kranzusch, P.J., Lee, A.S., Berger, J.M. & Doudna, J.A. Structure of human cGAS reveals a conserved family of second-messenger enzymes in innate immunity. Cell Reports 3, 1362–1368 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Gao, P. et al. Cyclic [G(2′,5′)pA(3′,5′)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase. Cell 153, 1094–1107 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Civril, F. et al. Structural mechanism of cytosolic DNA sensing by cGAS. Nature 498, 332–337 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Wu, J. et al. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339, 826–830 (2013).

    CAS  PubMed  Google Scholar 

  13. 13

    Zhang, X. et al. Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING. Mol. Cell 51, 226–235 (2013).

    CAS  PubMed  Google Scholar 

  14. 14

    Diner, E.J. et al. The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING. Cell Reports 3, 1355–1361 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Ablasser, A. et al. cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING. Nature 498, 380–384 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Ishikawa, H. & Barber, G.N. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455, 674–678 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17

    Zhong, B. et al. The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity 29, 538–550 (2008).

    CAS  PubMed  Google Scholar 

  18. 18

    Saitoh, T. et al. Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response. Proc. Natl. Acad. Sci. USA 106, 20842–20846 (2009).

    CAS  PubMed  Google Scholar 

  19. 19

    Ishikawa, H., Ma, Z. & Barber, G.N. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 461, 788–792 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Dobbs, N. et al. STING activation by translocation from the ER is associated with infection and autoinflammatory disease. Cell Host Microbe 18, 157–168 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Tanaka, Y. & Chen, Z.J. STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway. Sci. Signal. 5, ra20 (2012).

    PubMed  PubMed Central  Google Scholar 

  22. 22

    Fitzgerald, K.A. et al. IKKe and TBK1 are essential components of the IRF3 signaling pathway. Nat. Immunol. 4, 491–496 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Sharma, S. et al. Triggering the interferon antiviral response through an IKK-related pathway. Science 300, 1148–1151 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Herzner, A.-M. et al. Sequence-specific activation of the DNA sensor cGAS by Y-form DNA structures as found in primary HIV-1 cDNA. Nat. Immunol. 16, 1025–1033 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Gehrke, N. et al. Oxidative damage of DNA confers resistance to cytosolic nuclease TREX1 degradation and potentiates STING-dependent immune sensing. Immunity 39, 482–495 (2013).

    CAS  PubMed  Google Scholar 

  26. 26

    Seo, G.J. et al. Akt kinase-mediated checkpoint of cGAS DNA sensing pathway. Cell Rep. 13, 440–449 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Xia, P. et al. Glutamylation of the DNA sensor cGAS regulates its binding and synthase activity in antiviral immunity. Nat. Immunol. 17, 369–378 (2016).

    CAS  PubMed  Google Scholar 

  28. 28

    Schoggins, J.W. et al. A diverse range of gene products are effectors of the type I interferon antiviral response. Nature 472, 481–485 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Ma, F. et al. Positive feedback regulation of type I IFN production by the IFN-inducible DNA sensor cGAS. J. Immunol. 194, 1545–1554 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Chiu, Y.H., Macmillan, J.B. & Chen, Z.J. RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell 138, 576–591 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Xia, T., Konno, H., Ahn, J. & Barber, G.N. Deregulation of STING signaling in colorectal carcinoma constrains DNA damage responses and correlates with tumorigenesis. Cell Rep. 14, 282–297 (2016).

    CAS  PubMed  Google Scholar 

  32. 32

    Thomsen, M.K. et al. Lack of immunological DNA sensing in hepatocytes facilitates hepatitis B virus infection. Hepatology 64, 746–759 (2016).

    CAS  PubMed  Google Scholar 

  33. 33

    Berg, R.K. et al. T cells detect intracellular DNA but fail to induce type I IFN responses: implications for restriction of HIV replication. PLoS One 9, e84513 (2014).

    PubMed  PubMed Central  Google Scholar 

  34. 34

    Li, L. et al. Hydrolysis of 2′3′-cGAMP by ENPP1 and design of nonhydrolyzable analogs. Nat. Chem. Biol. 10, 1043–1048 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Ablasser, A. et al. Cell intrinsic immunity spreads to bystander cells via the intercellular transfer of cGAMP. Nature 503, 530–534 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Gentili, M. et al. Transmission of innate immune signaling by packaging of cGAMP in viral particles. Science 349, 1232–1236 (2015).

    CAS  Google Scholar 

  37. 37

    Bridgeman, A. et al. Viruses transfer the antiviral second messenger cGAMP between cells. Science 349, 1228–1232 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Gao, P. et al. Structure-function analysis of STING activation by c[G(2′,5′)pA(3′,5′)p] and targeting by antiviral DMXAA. Cell 154, 748–762 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Yin, Q. et al. Cyclic di-GMP sensing via the innate immune signaling protein STING. Mol. Cell 46, 735–745 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Shu, C., Yi, G., Watts, T., Kao, C.C. & Li, P. Structure of STING bound to cyclic di-GMP reveals the mechanism of cyclic dinucleotide recognition by the immune system. Nat. Struct. Mol. Biol. 19, 722–724 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Shang, G. et al. Crystal structures of STING protein reveal basis for recognition of cyclic di-GMP. Nat. Struct. Mol. Biol. 19, 725–727 (2012).

    CAS  PubMed  Google Scholar 

  42. 42

    Ouyang, S. et al. Structural analysis of the STING adaptor protein reveals a hydrophobic dimer interface and mode of cyclic di-GMP binding. Immunity 36, 1073–1086 (2012).

    CAS  PubMed  Google Scholar 

  43. 43

    Tsuchiya, Y., Jounai, N., Takeshita, F., Ishii, K.J. & Mizuguchi, K. Ligand-induced ordering of the C-terminal tail primes STING for phosphorylation by TBK1. EBioMedicine 9, 87–96 (2016).

    PubMed  PubMed Central  Google Scholar 

  44. 44

    Shi, H., Wu, J., Chen, Z.J. & Chen, C. Molecular basis for the specific recognition of the metazoan cyclic GMP-AMP by the innate immune adaptor protein STING. Proc. Natl. Acad. Sci. USA 112, 8947–8952 (2015).

    CAS  PubMed  Google Scholar 

  45. 45

    Kim, S. et al. Anticancer flavonoids are mouse-selective STING agonists. ACS Chem. Biol. 8, 1396–1401 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Conlon, J. et al. Mouse, but not human STING, binds and signals in response to the vascular disrupting agent 5,6-dimethylxanthenone-4-acetic acid. J. Immunol. 190, 5216–5225 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Cavlar, T., Deimling, T., Ablasser, A., Hopfner, K.P. & Hornung, V. Species-specific detection of the antiviral small-molecule compound CMA by STING. EMBO J. 32, 1440–1450 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Liu, S. et al. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science 347, aaa2630 (2015).

    PubMed  PubMed Central  Google Scholar 

  49. 49

    Konno, H., Konno, K. & Barber, G.N. Cyclic dinucleotides trigger ULK1 (ATG1) phosphorylation of STING to prevent sustained innate immune signaling. Cell 155, 688–698 (2013).

    CAS  PubMed  Google Scholar 

  50. 50

    Zhang, J., Hu, M.M., Wang, Y.Y. & Shu, H.B. TRIM32 protein modulates type I interferon induction and cellular antiviral response by targeting MITA/STING protein for K63-linked ubiquitination. J. Biol. Chem. 287, 28646–28655 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Tsuchida, T. et al. The ubiquitin ligase TRIM56 regulates innate immune responses to intracellular double-stranded DNA. Immunity 33, 765–776 (2010).

    CAS  PubMed  Google Scholar 

  52. 52

    Wang, Q. et al. The E3 ubiquitin ligase AMFR and INSIG1 bridge the activation of TBK1 kinase by modifying the adaptor STING. Immunity 41, 919–933 (2014).

    CAS  PubMed  Google Scholar 

  53. 53

    Zhong, B. et al. The ubiquitin ligase RNF5 regulates antiviral responses by mediating degradation of the adaptor protein MITA. Immunity 30, 397–407 (2009).

    CAS  PubMed  Google Scholar 

  54. 54

    Wang, Y. et al. TRIM30a Is a negative-feedback regulator of the intracellular DNA and DNA virus-triggered response by targeting STING. PLoS Pathog. 11, e1005012 (2015).

    PubMed  PubMed Central  Google Scholar 

  55. 55

    Mukai, K. et al. Activation of STING requires palmitoylation at the Golgi. Nat. Commun. 7, 11932 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Paludan, S.R. & Bowie, A.G. Immune sensing of DNA. Immunity 38, 870–880 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Ishii, K.J. et al. TANK-binding kinase-1 delineates innate and adaptive immune responses to DNA vaccines. Nature 451, 725–729 (2008).

    CAS  PubMed  Google Scholar 

  58. 58

    Gray, E.E. et al. The AIM2-like receptors are dispensable for the interferon response to intracellular DNA. Immunity 45, 255–266 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Yoh, S.M. et al. PQBP1 is a proximal sensor of the cGAS-dependent innate response to HIV-1. Cell 161, 1293–1305 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    Liang, Q. et al. Crosstalk between the cGAS DNA sensor and Beclin-1 autophagy protein shapes innate antimicrobial immune responses. Cell Host Microbe 15, 228–238 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61

    Paijo, J. et al. cGAS senses human cytomegalovirus and induces type I interferon responses in human monocyte-derived cells. PLoS Pathog. 12, e1005546 (2016).

    PubMed  PubMed Central  Google Scholar 

  62. 62

    Lio, C.W. et al. cGAS-STING signaling regulates initial innate control of cytomegalovirus infection. J. Virol. 90, 7789–7797 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Zhang, G. et al. Cytoplasmic isoforms of Kaposi sarcoma herpesvirus LANA recruit and antagonize the innate immune DNA sensor cGAS. Proc. Natl. Acad. Sci. USA 113, E1034–E1043 (2016).

    CAS  PubMed  Google Scholar 

  64. 64

    Wu, J.J. et al. Inhibition of cGAS DNA sensing by a herpesvirus virion protein. Cell Host Microbe 18, 333–344 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65

    Ma, Z. et al. Modulation of the cGAS-STING DNA sensing pathway by gammaherpesviruses. Proc. Natl. Acad. Sci. USA 112, E4306–E4315 (2015).

    CAS  PubMed  Google Scholar 

  66. 66

    Li, X.D. et al. Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects. Science 341, 1390–1394 (2013).

    CAS  Google Scholar 

  67. 67

    Schoggins, J.W. et al. Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity. Nature 505, 691–695 (2014).

    CAS  Google Scholar 

  68. 68

    Holm, C.K. et al. Virus-cell fusion as a trigger of innate immunity dependent on the adaptor STING. Nat. Immunol. 13, 737–743 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69

    Rasaiyaah, J. et al. HIV-1 evades innate immune recognition through specific cofactor recruitment. Nature 503, 402–405 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70

    Lahaye, X. et al. The capsids of HIV-1 and HIV-2 determine immune detection of the viral cDNA by the innate sensor cGAS in dendritic cells. Immunity 39, 1132–1142 (2013).

    CAS  PubMed  Google Scholar 

  71. 71

    Gao, D. et al. Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses. Science 341, 903–906 (2013).

    CAS  Google Scholar 

  72. 72

    Zeng, M. et al. MAVS, cGAS, and endogenous retroviruses in T-independent B cell responses. Science 346, 1486–1492 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73

    Portnoy, D.A., Auerbuch, V. & Glomski, I.J. The cell biology of Listeria monocytogenes infection: the intersection of bacterial pathogenesis and cell-mediated immunity. J. Cell Biol. 158, 409–414 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Watson, R.O. et al. The cytosolic sensor cGAS detects Mycobacterium tuberculosis DNA to induce type I interferons and activate autophagy. Cell Host Microbe 17, 811–819 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75

    Wassermann, R. et al. Mycobacterium tuberculosis differentially activates cGAS- and inflammasome-dependent intracellular immune responses through ESX-1. Cell Host Microbe 17, 799–810 (2015).

    CAS  PubMed  Google Scholar 

  76. 76

    Collins, A.C. et al. Cyclic GMP-AMP synthase is an innate immune DNA sensor for Mycobacterium tuberculosis. Cell Host Microbe 17, 820–828 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77

    Hansen, K. et al. Listeria monocytogenes induces IFNb expression through an IFI16-, cGAS- and STING-dependent pathway. EMBO J. 33, 1654–1666 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78

    Storek, K.M., Gertsvolf, N.A., Ohlson, M.B. & Monack, D.M. cGAS and Ifi204 cooperate to produce type I IFNs in response to Francisella infection. J. Immunol. 194, 3236–3245 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79

    Zhang, Y. et al. The DNA sensor, cyclic GMP-AMP synthase, is essential for induction of IFN-b during Chlamydia trachomatis infection. J. Immunol. 193, 2394–2404 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80

    Andrade, W.A. et al. Type I interferon induction by Neisseria gonorrhoeae: dual requirement of cyclic GMP-AMP synthase and Toll-like receptor 4. Cell Rep. 15, 2438–2448 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81

    Andrade, W.A. et al. Group B streptococcus degrades cyclic-di-AMP to modulate STING-dependent type I interferon production. Cell Host Microbe 20, 49–59 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82

    Christensen, M.H. et al. HSV-1 ICP27 targets the TBK1-activated STING signalsome to inhibit virus-induced type I IFN expression. EMBO J. 35, 1385–1399 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83

    Lau, L., Gray, E.E., Brunette, R.L. & Stetson, D.B. DNA tumor virus oncogenes antagonize the cGAS-STING DNA-sensing pathway. Science 350, 568–571 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84

    Crow, Y.J. Type I interferonopathies: mendelian type I interferon up-regulation. Curr. Opin. Immunol. 32, 7–12 (2015).

    CAS  PubMed  Google Scholar 

  85. 85

    Gray, E.E., Treuting, P.M., Woodward, J.J. & Stetson, D.B. Cutting edge: cGAS is required for lethal autoimmune disease in the Trex1-deficient mouse model of Aicardi-Goutières syndrome. J. Immunol. 195, 1939–1943 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86

    Gao, D. et al. Activation of cyclic GMP-AMP synthase by self-DNA causes autoimmune diseases. Proc. Natl. Acad. Sci. USA 112, E5699–E5705 (2015).

    CAS  PubMed  Google Scholar 

  87. 87

    Gall, A. et al. Autoimmunity initiates in nonhematopoietic cells and progresses via lymphocytes in an interferon-dependent autoimmune disease. Immunity 36, 120–131 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88

    Pokatayev, V. et al. RNase H2 catalytic core Aicardi-Goutières syndrome-related mutant invokes cGAS-STING innate immune-sensing pathway in mice. J. Exp. Med. 213, 329–336 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89

    Mackenzie, K.J. et al. Ribonuclease H2 mutations induce a cGAS/STING-dependent innate immune response. EMBO J. 35, 831–844 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90

    Lindahl, T., Barnes, D.E., Yang, Y.G. & Robins, P. Biochemical properties of mammalian TREX1 and its association with DNA replication and inherited inflammatory disease. Biochem. Soc. Trans. 37, 535–538 (2009).

    CAS  PubMed  Google Scholar 

  91. 91

    Yang, Y.G., Lindahl, T. & Barnes, D.E. Trex1 exonuclease degrades ssDNA to prevent chronic checkpoint activation and autoimmune disease. Cell 131, 873–886 (2007).

    CAS  PubMed  Google Scholar 

  92. 92

    Kawane, K. et al. Requirement of DNase II for definitive erythropoiesis in the mouse fetal liver. Science 292, 1546–1549 (2001).

    CAS  PubMed  Google Scholar 

  93. 93

    Yoshida, H., Okabe, Y., Kawane, K., Fukuyama, H. & Nagata, S. Lethal anemia caused by interferon-beta produced in mouse embryos carrying undigested DNA. Nat. Immunol. 6, 49–56 (2005).

    CAS  PubMed  Google Scholar 

  94. 94

    Okabe, Y., Kawane, K., Akira, S., Taniguchi, T. & Nagata, S. Toll-like receptor-independent gene induction program activated by mammalian DNA escaped from apoptotic DNA degradation. J. Exp. Med. 202, 1333–1339 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95

    Liu, Y. et al. Activated STING in a vascular and pulmonary syndrome. N. Engl. J. Med. 371, 507–518 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96

    Dunn, G.P., Koebel, C.M. & Schreiber, R.D. Interferons, immunity and cancer immunoediting. Nat. Rev. Immunol. 6, 836–848 (2006).

    CAS  PubMed  Google Scholar 

  97. 97

    Fuertes, M.B., Woo, S.R., Burnett, B., Fu, Y.X. & Gajewski, T.F. Type I interferon response and innate immune sensing of cancer. Trends Immunol. 34, 67–73 (2013).

    CAS  PubMed  Google Scholar 

  98. 98

    Corrales, L. & Gajewski, T.F. Endogenous and pharmacologic targeting of the STING pathway in cancer immunotherapy. Cytokine 77, 245–247 (2016).

    PubMed  Google Scholar 

  99. 99

    Woo, S.R. et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 41, 830–842 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100

    Deng, L. et al. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity 41, 843–852 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. 101

    Liu, X. et al. CD47 blockade triggers T cell-mediated destruction of immunogenic tumors. Nat. Med. 21, 1209–1215 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. 102

    Demaria, O. et al. STING activation of tumor endothelial cells initiates spontaneous and therapeutic antitumor immunity. Proc. Natl. Acad. Sci. USA 112, 15408–15413 (2015).

    CAS  PubMed  Google Scholar 

  103. 103

    Corrales, L. et al. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep. 11, 1018–1030 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104

    Huang, L. et al. Cutting edge: DNA sensing via the STING adaptor in myeloid dendritic cells induces potent tolerogenic responses. J. Immunol. 191, 3509–3513 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. 105

    Lemos, H. et al. STING promotes the growth of tumors characterized by low antigenicity via IDO activation. Cancer Res. 76, 2076–2081 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106

    Chen, Q. et al. Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer. Nature 533, 493–498 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zhijian J Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Sun, L. & Chen, Z. Regulation and function of the cGAS–STING pathway of cytosolic DNA sensing. Nat Immunol 17, 1142–1149 (2016). https://doi.org/10.1038/ni.3558

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing