Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Development of innate lymphoid cells

Abstract

Innate lymphoid cells (ILCs) are a family of immune effector cells that have important roles in host defense, metabolic homeostasis and tissue repair but can also contribute to inflammatory diseases such as asthma and colitis. These cells can be categorized into three groups on the basis of the transcription factors that direct their function and the cytokines they produce, which parallel the effector functions of T lymphocytes. The hierarchy of cell-fate-restriction events that occur as common lymphoid progenitors become committed to each of the ILC lineages further underscores the relationship between these innate immune cells and T lymphocytes. In this Review we discuss the developmental program of ILCs and transcription factors that guide ILC lineage specification and commitment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transcriptional control of ILC development.
Figure 2: Comparison of the transcriptional networks that guide the development of NK cells and ILC1s from lineage-restricted progenitors.

Similar content being viewed by others

References

  1. Sun, J.C. & Lanier, L.L. NK cell development, homeostasis and function: parallels with CD8+ T cells. Nat. Rev. Immunol. 11, 645–657 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Shih, H.Y. et al. Transcriptional and epigenetic networks of helper T and innate lymphoid cells. Immunol. Rev. 261, 23–49 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Seillet, C., Belz, G.T. & Huntington, N.D. Development, homeostasis, and heterogeneity of NK cells and ILC1. Curr. Top. Microbiol. Immunol. 395, 37–61 (2016).

    CAS  PubMed  Google Scholar 

  4. Guerra, N. et al. NKG2D-deficient mice are defective in tumor surveillance in models of spontaneous malignancy. Immunity 28, 571–580 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Foley, B. et al. The biology of NK cells and their receptors affects clinical outcomes after hematopoietic cell transplantation (HCT). Immunol. Rev. 258, 45–63 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Saenz, S.A., Noti, M. & Artis, D. Innate immune cell populations function as initiators and effectors in Th2 cytokine responses. Trends Immunol. 31, 407–413 (2010).

    CAS  PubMed  Google Scholar 

  7. Walker, J.A. & McKenzie, A.N. Development and function of group 2 innate lymphoid cells. Curr. Opin. Immunol. 25, 148–155 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Licona-Limón, P., Kim, L.K., Palm, N.W. & Flavell, R.A. TH2, allergy and group 2 innate lymphoid cells. Nat. Immunol. 14, 536–542 (2013).

    PubMed  Google Scholar 

  9. van de Pavert, S.A. & Mebius, R.E. New insights into the development of lymphoid tissues. Nat. Rev. Immunol. 10, 664–674 (2010).

    CAS  PubMed  Google Scholar 

  10. Montaldo, E., Juelke, K. & Romagnani, C. Group 3 innate lymphoid cells (ILC3s): origin, differentiation, and plasticity in humans and mice. Eur. J. Immunol. 45, 2171–2182 (2015).

    CAS  PubMed  Google Scholar 

  11. Song, C. et al. Unique and redundant functions of NKp46+ ILC3s in models of intestinal inflammation. J. Exp. Med. 212, 1869–1882 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Pearson, C. et al. ILC3 GM-CSF production and mobilisation orchestrate acute intestinal inflammation. eLife 5, e10066 (2016).

    PubMed  PubMed Central  Google Scholar 

  13. Spits, H., Bernink, J. H. & Lanier, L. NK cells and type 1 innate lymphoid cells: partners in host defense. Nat. Immunol. http://dx.doi.org/10.1038/ni.3482 (21 June 2016).

  14. Spits, H. et al. Innate lymphoid cells—a proposal for uniform nomenclature. Nat. Rev. Immunol. 13, 145–149 (2013).

    CAS  PubMed  Google Scholar 

  15. Daussy, C. et al. T-bet and Eomes instruct the development of two distinct natural killer cell lineages in the liver and in the bone marrow. J. Exp. Med. 211, 563–577 (2014).In this paper, an EomesGFP reporter mouse is used to distinguish two subsets of NK cells that are Eomes+ or Eomes in the liver and bone marrow. These subsets have different functional properties and gene-expression profiles that are now known to distinguish conventional NK cells (Eomes+) from ILC1s and some tissue-resident NK cells (EomesT-bet+). This paper builds on observations made in reference 39, which identifies these two subsets on the basis of their differential dependence on Eomes and T-bet. This paper also shows that T-bet can repress Eomes when expressed in bone-marrow NK cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Klose, C.S. et al. Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell 157, 340–356 (2014).An Id2-expressing progenitor of all CD127+ ILCs is identified in this paper. The CHILP generates ILC2, ILC3 and LTi cells and an ILC1 that is distinct from NK cells.

    CAS  PubMed  Google Scholar 

  17. Robinette, M.L. et al. Immunological Genome Consortium. Transcriptional programs define molecular characteristics of innate lymphoid cell classes and subsets. Nat. Immunol. 16, 306–317 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Babicć, M. et al. Cytomegalovirus immunoevasin reveals the physiological role of “missing self” recognition in natural killer cell dependent virus control in vivo. J. Exp. Med. 207, 2663–2673 (2010).

    Google Scholar 

  19. Parikh, B.A. et al. Dual requirement of cytokine and activation receptor triggering for cytotoxic control of murine cytomegalovirus by NK cells. PLoS Pathog. 11, e1005323 (2015).

    PubMed  PubMed Central  Google Scholar 

  20. Kärre, K. NK cells, MHC class I molecules and the missing self. Scand. J. Immunol. 55, 221–228 (2002).

    PubMed  Google Scholar 

  21. Cortez, V.S., Robinette, M.L. & Colonna, M. Innate lymphoid cells: new insights into function and development. Curr. Opin. Immunol. 32, 71–77 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Cortez, V.S., Fuchs, A., Cella, M., Gilfillan, S. & Colonna, M. Cutting edge: salivary gland NK cells develop independently of Nfil3 in steady-state. J. Immunol. 192, 4487–4491 (2014).

    CAS  PubMed  Google Scholar 

  23. Sojka, D.K. et al. Tissue-resident natural killer (NK) cells are cell lineages distinct from thymic and conventional splenic NK cells. eLife 3, e01659 (2014).

    PubMed  PubMed Central  Google Scholar 

  24. Constantinides, M.G. et al. PLZF expression maps the early stages of ILC1 lineage development. Proc. Natl. Acad. Sci. USA 112, 5123–5128 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Serafini, N., Vosshenrich, C.A. & Di Santo, J.P. Transcriptional regulation of innate lymphoid cell fate. Nat. Rev. Immunol. 15, 415–428 (2015).

    CAS  PubMed  Google Scholar 

  26. Vosshenrich, C.A. et al. Roles for common cytokine receptor γ-chain-dependent cytokines in the generation, differentiation, and maturation of NK cell precursors and peripheral NK cells in vivo. J. Immunol. 174, 1213–1221 (2005).

    CAS  PubMed  Google Scholar 

  27. Rosmaraki, E.E. et al. Identification of committed NK cell progenitors in adult murine bone marrow. Eur. J. Immunol. 31, 1900–1909 (2001).

    CAS  PubMed  Google Scholar 

  28. Kim, S. et al. In vivo developmental stages in murine natural killer cell maturation. Nat. Immunol. 3, 523–528 (2002).

    PubMed  Google Scholar 

  29. Fathman, J.W. et al. Identification of the earliest natural killer cell-committed progenitor in murine bone marrow. Blood 118, 5439–5447 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Lanier, L.L. Evolutionary struggles between NK cells and viruses. Nat. Rev. Immunol. 8, 259–268 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Cichocki, F., Miller, J.S. & Anderson, S.K. Killer immunoglobulin-like receptor transcriptional regulation: a fascinating dance of multiple promoters. J. Innate Immun. 3, 242–248 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Shifrin, N., Raulet, D.H. & Ardolino, M. NK cell self tolerance, responsiveness and missing self recognition. Semin. Immunol. 26, 138–144 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Elliott, J.M. & Yokoyama, W.M. Unifying concepts of MHC-dependent natural killer cell education. Trends Immunol. 32, 364–372 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Chiossone, L. et al. Maturation of mouse NK cells is a 4-stage developmental program. Blood 113, 5488–5496 (2009).

    CAS  PubMed  Google Scholar 

  35. Bezman, N.A. et al. Immunological Genome Project Consortium. Molecular definition of the identity and activation of natural killer cells. Nat. Immunol. 13, 1000–1009 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Marçais, A. et al. The metabolic checkpoint kinase mTOR is essential for IL-15 signaling during the development and activation of NK cells. Nat. Immunol. 15, 749–757 (2014).

    PubMed  PubMed Central  Google Scholar 

  37. Sun, J.C., Ma, A. & Lanier, L.L. Cutting edge: IL-15-independent NK cell response to mouse cytomegalovirus infection. J. Immunol. 183, 2911–2914 (2009).

    CAS  PubMed  Google Scholar 

  38. Vosshenrich, C.A. & Di Santo, J.P. Developmental programming of natural killer and innate lymphoid cells. Curr. Opin. Immunol. 25, 130–138 (2013).

    CAS  PubMed  Google Scholar 

  39. Gordon, S.M. et al. The transcription factors T-bet and Eomes control key checkpoints of natural killer cell maturation. Immunity 36, 55–67 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Pikovskaya, O. et al. Cutting Edge: eomesodermin is sufficient to direct type 1 innate lymphocyte development into the conventional NK lineage. J. Immunol. 196, 1449–1454 (2016).

    CAS  PubMed  Google Scholar 

  41. van Helden, M.J. et al. Terminal NK cell maturation is controlled by concerted actions of T-bet and Zeb2 and is essential for melanoma rejection. J. Exp. Med. 212, 2015–2025 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Yokota, Y. et al. Development of peripheral lymphoid organs and natural killer cells depends on the helix-loop-helix inhibitor Id2. Nature 397, 702–706 (1999).

    CAS  PubMed  Google Scholar 

  43. Boos, M.D., Yokota, Y., Eberl, G. & Kee, B.L. Mature natural killer cell and lymphoid tissue-inducing cell development requires Id2-mediated suppression of E protein activity. J. Exp. Med. 204, 1119–1130 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Ramirez, K. et al. Gene deregulation and chronic activation in natural killer cells deficient in the transcription factor ETS1. Immunity 36, 921–932 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Delconte, R.B. et al. The helix-loop-helix protein ID2 governs NK cell fate by tuning their sensitivity to interleukin-15. Immunity 44, 103–115 (2016).

    CAS  PubMed  Google Scholar 

  46. Male, V. et al. The transcription factor E4bp4/Nfil3 controls commitment to the NK lineage and directly regulates Eomes and Id2 expression. J. Exp. Med. 211, 635–642 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Seehus, C.R. et al. The development of innate lymphoid cells requires TOX-dependent generation of a common innate lymphoid cell progenitor. Nat. Immunol. 16, 599–608 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Gascoyne, D.M. et al. The basic leucine zipper transcription factor E4BP4 is essential for natural killer cell development. Nat. Immunol. 10, 1118–1124 (2009).

    CAS  PubMed  Google Scholar 

  49. Aliahmad, P., de la Torre, B. & Kaye, J. Shared dependence on the DNA-binding factor TOX for the development of lymphoid tissue-inducer cell and NK cell lineages. Nat. Immunol. 11, 945–952 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Firth, M.A. et al. Nfil3-independent lineage maintenance and antiviral response of natural killer cells. J. Exp. Med. 210, 2981–2990 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Crotta, S. et al. The transcription factor E4BP4 is not required for extramedullary pathways of NK cell development. J. Immunol. 192, 2677–2688 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Seillet, C. et al. Differential requirement for Nfil3 during NK cell development. J. Immunol. 192, 2667–2676 (2014).

    CAS  PubMed  Google Scholar 

  53. Kim, B.S., Wojno, E.D. & Artis, D. Innate lymphoid cells and allergic inflammation. Curr. Opin. Immunol. 25, 738–744 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Molofsky, A.B. et al. Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages. J. Exp. Med. 210, 535–549 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Hams, E., Locksley, R.M., McKenzie, A.N. & Fallon, P.G. Cutting edge: IL-25 elicits innate lymphoid type 2 and type II NKT cells that regulate obesity in mice. J. Immunol. 191, 5349–5353 (2013).

    CAS  PubMed  Google Scholar 

  56. Lee, M.W. et al. Activated type 2 innate lymphoid cells regulate beige fat biogenesis. Cell 160, 74–87 (2015).This paper demonstrates that IL-33-elicited ILC2s, in collaboration with eosinophil-derived cytokines, promote a subset of adipocyte progenitors to proliferate and commit to differentiation to the beige-fat lineage under the influence of the cytokine receptor IL-4Rα. Therefore, ILC2s might contribute to thermal homeostasis by regulating the production of beige or brown fat.

    CAS  PubMed  Google Scholar 

  57. Moro, K. et al. Innate production of TH2 cytokines by adipose tissue-associated c-Kit+Sca-1+ lymphoid cells. Nature 463, 540–544 (2010).

    CAS  PubMed  Google Scholar 

  58. Neill, D.R. et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 464, 1367–1370 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Price, A.E. et al. Systemically dispersed innate IL-13-expressing cells in type 2 immunity. Proc. Natl. Acad. Sci. USA 107, 11489–11494 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Saenz, S.A. et al. IL25 elicits a multipotent progenitor cell population that promotes TH2 cytokine responses. Nature 464, 1362–1366 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Saenz, S.A. et al. IL-25 simultaneously elicits distinct populations of innate lymphoid cells and multipotent progenitor type 2 (MPPtype2) cells. J. Exp. Med. 210, 1823–1837 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Huang, Y. et al. IL-25-responsive, lineage-negative KLRG1hi cells are multipotential 'inflammatory' type 2 innate lymphoid cells. Nat. Immunol. 16, 161–169 (2015).

    CAS  PubMed  Google Scholar 

  63. Hoyler, T. et al. The transcription factor GATA-3 controls cell fate and maintenance of type 2 innate lymphoid cells. Immunity 37, 634–648 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Moro, K., Ealey, K.N., Kabata, H. & Koyasu, S. Isolation and analysis of group 2 innate lymphoid cells in mice. Nat. Protoc. 10, 792–806 (2015).

    CAS  PubMed  Google Scholar 

  65. Constantinides, M.G., McDonald, B.D., Verhoef, P.A. & Bendelac, A. A committed precursor to innate lymphoid cells. Nature 508, 397–401 (2014).In this paper, progenitors of all CD127+ ILCs except LTi cells are identified by their expression of PLZF. PLZF marks a portion of all cells of the ILC1, ILC2 and ILC3 subsets and is required for the development of ILC2s and a subset of ILC1s.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Wong, S.H. et al. Transcription factor RORα is critical for nuocyte development. Nat. Immunol. 13, 229–236 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Chea, S. et al. Single-cell gene expression analyses reveal heterogeneous responsiveness of fetal innate lymphoid progenitors to notch signaling. Cell Rep. 14, 1500–1516 (2016).In this study, single-cell gene expression analysis is used to classify fetal multipotent innate lymphoid cell progenitors into two subsets that correlated with the retention (αLP1) or loss (αLP2) of T lymphocyte potential. The authors then assess the requirements for Notch signaling in the αLP2 subset and find that Notch signaling is required in only a subset of ILC2 progenitors and that the main effect of Notch signaling is on proliferation. This study demonstrates the strength of single-cell gene-expression analysis for classification of progenitor cells and provides insights into the controversial requirements for Notch signaling in ILCs.

    CAS  PubMed  Google Scholar 

  68. Gentek, R. et al. Modulation of signal strength switches notch from an inducer of T cells to an inducer of ILC2. Front. Immunol. 4, 334 (2013).

    PubMed  PubMed Central  Google Scholar 

  69. Klein Wolterink, R.G. et al. Essential, dose-dependent role for the transcription factor Gata3 in the development of IL-5+ and IL-13+ type 2 innate lymphoid cells. Proc. Natl. Acad. Sci. USA 110, 10240–10245 (2013).

    PubMed  PubMed Central  Google Scholar 

  70. Yagi, R. et al. The transcription factor GATA3 is critical for the development of all IL-7Rα-expressing innate lymphoid cells. Immunity 40, 378–388 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Mielke, L.A. et al. TCF-1 controls ILC2 and NKp46+RORγt+ innate lymphocyte differentiation and protection in intestinal inflammation. J. Immunol. 191, 4383–4391 (2013).

    CAS  PubMed  Google Scholar 

  72. Yang, Q. et al. T cell factor 1 is required for group 2 innate lymphoid cell generation. Immunity 38, 694–704 (2013).In this paper, a Tcf7GFP reporter is used to identify a multipotent progenitor of all ILCs in the lineage-marker-negative population of bone marrow. This progenitor, called the 'early innate lymphoid progenitor', has a gene-expression program similar to that of CLPs but differs from CLPs in its expression of Id2 and the absence of Flt3 and CD127.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Califano, D. et al. Transcription factor Bcl11b controls identity and function of mature type 2 innate lymphoid cells. Immunity 43, 354–368 (2015).This paper, along with refs. 74 and 75 , demonstrates a specific requirement for Bcl-11b in the ILC2 lineage. This paper shows that Bcl-11b directly regulates Gfi1 to control the ILC2-associated genes Gata3 and Il1rl1 and represses the ILC3-associated cytokine-encoding gene Il17a . These Bcl-11b-deficient ILC2s make IL-17 rather than IL-13 when activated and recruit neutrophils rather than eosinophils to the lungs.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Yu, Y. et al. The transcription factor Bcl11b is specifically expressed in group 2 innate lymphoid cells and is essential for their development. J. Exp. Med. 212, 865–874 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Walker, J.A. et al. Bcl11b is essential for group 2 innate lymphoid cell development. J. Exp. Med. 212, 875–882 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Zook, E.C. et al. The ETS1 transcription factor is required for the development and cytokine-induced expansion of ILC2. J. Exp. Med. 213, 687–696 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Monticelli, L.A. et al. Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat. Immunol. 12, 1045–1054 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Spooner, C.J. et al. Specification of type 2 innate lymphocytes by the transcriptional determinant Gfi1. Nat. Immunol. 14, 1229–1236 (2013).

    CAS  PubMed  Google Scholar 

  79. van de Pavert, S.A. & Vivier, E. Differentiation and function of group 3 innate lymphoid cells, from embryo to adult. Int. Immunol. 28, 35–42 (2016).

    CAS  PubMed  Google Scholar 

  80. Rankin, L.C. et al. Complementarity and redundancy of IL-22-producing innate lymphoid cells. Nat. Immunol. 17, 179–186 (2016).

    CAS  PubMed  Google Scholar 

  81. Aparicio-Domingo, P. et al. Type 3 innate lymphoid cells maintain intestinal epithelial stem cells after tissue damage. J. Exp. Med. 212, 1783–1791 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Cording, S., Medvedovic, J., Cherrier, M. & Eberl, G. Development and regulation of RORγt(+) innate lymphoid cells. FEBS Lett. 588, 4176–4181 (2014).

    CAS  PubMed  Google Scholar 

  83. van de Pavert, S.A. et al. Maternal retinoids control type 3 innate lymphoid cells and set the offspring immunity. Nature 508, 123–127 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Kim, M.H., Taparowsky, E.J. & Kim, C.H. Retinoic acid differentially regulates the migration of innate lymphoid cell subsets to the gut. Immunity 43, 107–119 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Qiu, J. & Zhou, L. Aryl hydrocarbon receptor promotes RORγt+ group 3 ILCs and controls intestinal immunity and inflammation. Semin. Immunopathol. 35, 657–670 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Qiu, J. et al. The aryl hydrocarbon receptor regulates gut immunity through modulation of innate lymphoid cells. Immunity 36, 92–104 (2012).

    CAS  PubMed  Google Scholar 

  87. Satoh-Takayama, N. et al. IL-7 and IL-15 independently program the differentiation of intestinal CD3NKp46+ cell subsets from Id2-dependent precursors. J. Exp. Med. 207, 273–280 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Guo, X. et al. Innate lymphoid cells control early colonization resistance against intestinal pathogens through ID2-dependent regulation of the microbiota. Immunity 42, 731–743 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Tanaka, H. & Taniuchi, I. The CD4/CD8 lineages: central decisions and peripheral modifications for T lymphocytes. Curr. Top. Microbiol. Immunol. 373, 113–129 (2014).

    CAS  PubMed  Google Scholar 

  90. Levanon, D. et al. Transcription factor Runx3 regulates interleukin-15-dependent natural killer cell activation. Mol. Cell. Biol. 34, 1158–1169 (2014).

    PubMed  PubMed Central  Google Scholar 

  91. Ebihara, T. et al. Runx3 specifies lineage commitment of innate lymphoid cells. Nat. Immunol. 16, 1124–1133 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Zhong, C. et al. Group 3 innate lymphoid cells continuously require the transcription factor GATA-3 after commitment. Nat. Immunol. 17, 169–178 (2016).

    CAS  PubMed  Google Scholar 

  93. Serafini, N. et al. Gata3 drives development of RORγt+ group 3 innate lymphoid cells. J. Exp. Med. 211, 199–208 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Yang, Q. & Bhandoola, A. The development of adult innate lymphoid cells. Curr. Opin. Immunol. 39, 114–120 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Yang, Q., Saenz, S.A., Zlotoff, D.A., Artis, D. & Bhandoola, A. Cutting edge: natural helper cells derive from lymphoid progenitors. J. Immunol. 187, 5505–5509 (2011).

    CAS  PubMed  Google Scholar 

  96. Schlenner, S.M. et al. Fate mapping reveals separate origins of T cells and myeloid lineages in the thymus. Immunity 32, 426–436 (2010).

    CAS  PubMed  Google Scholar 

  97. Karo, J.M., Schatz, D.G. & Sun, J.C. The RAG recombinase dictates functional heterogeneity and cellular fitness in natural killer cells. Cell 159, 94–107 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Yang, Q. et al. TCF-1 upregulation identifies early innate lymphoid progenitors in the bone marrow. Nat. Immunol. 16, 1044–1050 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Yu, X. et al. The basic leucine zipper transcription factor NFIL3 directs the development of a common innate lymphoid cell precursor. eLife 3 http://dx.doi.org/10.7554/eLife.04406 (2014).

  100. Xu, W. et al. NFIL3 orchestrates the emergence of common helper innate lymphoid cell precursors. Cell Rep. 10, 2043–2054 (2015).

    CAS  PubMed  Google Scholar 

  101. Ishizuka, I.E. et al. Single-cell analysis defines the divergence between the innate lymphoid cell lineage and lymphoid tissue-inducer cell lineage. Nat. Immunol. 17, 269–276 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Gasteiger, G. et al. IL-2-dependent tuning of NK cell sensitivity for target cells is controlled by regulatory T cells. J. Exp. Med. 210, 1167–1178 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Gasteiger, G., Hemmers, S., Bos, P.D., Sun, J.C. & Rudensky, A.Y. IL-2-dependent adaptive control of NK cell homeostasis. J. Exp. Med. 210, 1179–1187 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Vahedi, G. et al. STATs shape the active enhancer landscape of T cell populations. Cell 151, 981–993 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Gasteiger, G., Fan, X., Dikiy, S., Lee, S.Y. & Rudensky, A.Y. Tissue residency of innate lymphoid cells in lymphoid and nonlymphoid organs. Science 350, 981–985 (2015).In this paper, parabiotic mice are used to demonstrate that ILCs and NK cells in the salivary glands are not replaced by circulating progenitor cells over the course of 6 weeks. In contrast, conventional NK cells are rapidly equilibrated in these mice. This paper raises the question of the origins of these tissue-resident ILCs.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Jamieson, A.M., Isnard, P., Dorfman, J.R., Coles, M.C. & Raulet, D.H. Turnover and proliferation of NK cells in steady state and lymphopenic conditions. J. Immunol. 172, 864–870 (2004).

    CAS  PubMed  Google Scholar 

  107. Bando, J.K., Liang, H.E. & Locksley, R.M. Identification and distribution of developing innate lymphoid cells in the fetal mouse intestine. Nat. Immunol. 16, 153–160 (2015). This paper demonstrates the presence of Arg1YFP multipotent and early-lineage-restricted progenitors of ILCs in fetal intestine between E13.5 and E15.5.

    CAS  PubMed  Google Scholar 

  108. Bando, J.K., Nussbaum, J.C., Liang, H.E. & Locksley, R.M. Type 2 innate lymphoid cells constitutively express arginase-I in the naive and inflamed lung. J. Leukoc. Biol. 94, 877–884 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Hoeffel, G. & Ginhoux, F. Ontogeny of tissue-resident macrophages. Front. Immunol. 6, 486 (2015).

    PubMed  PubMed Central  Google Scholar 

  110. Juelke, K. & Romagnani, C. Differentiation of human innate lymphoid cells (ILCs). Curr. Opin. Immunol. 38, 75–85 (2016).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Sun and members of the Kee laboratory for discussions, and A. Sperling for comments on this manuscript. Supported by the US National Institutes of Health (F32CA177235 for E.C.Z., and R01 AI106352 and R21 AI115338 for work in the laboratory of B.L.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara L Kee.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zook, E., Kee, B. Development of innate lymphoid cells. Nat Immunol 17, 775–782 (2016). https://doi.org/10.1038/ni.3481

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.3481

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing