Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Innate lymphoid cells in defense, immunopathology and immunotherapy

Targeting of innate lymphoid cells, the innate counterparts of T cells, might allow early direction of the immune system into the appropriate response during preventive and therapeutic strategies aimed at pathogens and inflammatory pathologies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: ILC-based immunotherapy.

References

  1. 1

    Eberl, G., Colonna, M., Di Santo, J.P. & McKenzie, A.N. Science 348, aaa6566 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2

    Brennan, P.J., Brigl, M. & Brenner, M.B. Nat. Rev. Immunol. 13, 101–117 (2013).

    CAS  Article  Google Scholar 

  3. 3

    Hepworth, M.R. et al. Nature 498, 113–117 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4

    Oliphant, C.J. et al. Immunity 41, 283–295 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5

    Satoh-Takayama, N. et al. Immunity 29, 958–970 (2008).

    CAS  Article  PubMed  Google Scholar 

  6. 6

    Zheng, Y. et al. Nat. Med. 14, 282–289 (2008).

    CAS  Article  PubMed  Google Scholar 

  7. 7

    Hernández, P.P. et al. Nat. Immunol. 16, 698–707 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8

    Van Maele, L. et al. J. Infect. Dis. 210, 493–503 (2014).

    CAS  Article  PubMed  Google Scholar 

  9. 9

    Klose, C.S. et al. Nature 494, 261–265 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10

    Klose, C.S. et al. Cell 157, 340–356 (2014).

    CAS  Article  Google Scholar 

  11. 11

    Abt, M.C. et al. Cell Host Microbe 18, 27–37 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12

    Moro, K. et al. Nature 463, 540–544 (2010).

    CAS  Article  Google Scholar 

  13. 13

    Neill, D.R. et al. Nature 464, 1367–1370 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14

    Monticelli, L.A. et al. Nat. Immunol. 12, 1045–1054 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15

    Sonnenberg, G.F. et al. Science 336, 1321–1325 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16

    Buonocore, S. et al. Nature 464, 1371–1375 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17

    Geremia, A. et al. J. Exp. Med. 208, 1127–1133 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18

    Bernink, J.H. et al. Nat. Immunol. 14, 221–229 (2013).

    CAS  Article  PubMed  Google Scholar 

  19. 19

    Fuchs, A. et al. Immunity 38, 769–781 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20

    Lee, M. et al. Cell 160, 74–87 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21

    Qiu, Y. et al. Cell 157, 1292–1308 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22

    Burcelin, R., Garidou, L. & Pomié, C . Semin. Immunol. 24, 67–74 (2012).

    CAS  Article  PubMed  Google Scholar 

  23. 23

    Wensveen, F.M. et al. Nat. Immunol. 16, 376–385 (2015).

    CAS  Article  PubMed  Google Scholar 

  24. 24

    Kim, H.Y. et al. Nat. Med. 20, 54–61 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25

    Halim, T.Y. et al. Immunity 40, 425–435 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26

    Salimi, M. et al. J. Exp. Med. 210, 2939–2950 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27

    Kim, B.S. et al. Sci. Transl. Med. 5, 170ra116 (2013).

    Article  Google Scholar 

  28. 28

    Li, D. et al. J. Allergy Clin. Immunol. 134, 1422–1432 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29

    McHedlidze, T. et al. Immunity 39, 357–371 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30

    Kruglov, A.A. et al. Science 342, 1243–1246 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31

    Magri, G. et al. Nat. Immunol. 15, 354–364 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32

    Lochner, M. et al. J. Exp. Med. 208, 125–134 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33

    Aparicio-Domingo, P. et al. J. Exp. Med. 212, 1783–1791 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34

    Hanash, A.M. et al. Immunity 37, 339–350 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Supported by the Agence Nationale de la Recherche (S.C. and J.M.) and the European Molecular Biology Organization (T.A.).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gérard Eberl.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cording, S., Medvedovic, J., Aychek, T. et al. Innate lymphoid cells in defense, immunopathology and immunotherapy. Nat Immunol 17, 755–757 (2016). https://doi.org/10.1038/ni.3448

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing