Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Broad defects in the energy metabolism of leukocytes underlie immunoparalysis in sepsis

Abstract

The acute phase of sepsis is characterized by a strong inflammatory reaction. At later stages in some patients, immunoparalysis may be encountered, which is associated with a poor outcome. By transcriptional and metabolic profiling of human patients with sepsis, we found that a shift from oxidative phosphorylation to aerobic glycolysis was an important component of initial activation of host defense. Blocking metabolic pathways with metformin diminished cytokine production and increased mortality in systemic fungal infection in mice. In contrast, in leukocytes rendered tolerant by exposure to lipopolysaccharide or after isolation from patients with sepsis and immunoparalysis, a generalized metabolic defect at the level of both glycolysis and oxidative metabolism was apparent, which was restored after recovery of the patients. Finally, the immunometabolic defects in humans were partially restored by therapy with recombinant interferon-γ, which suggested that metabolic processes might represent a therapeutic target in sepsis.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Immunometabolism is upregulated during the acute inflammatory phase.
Figure 2: Inhibition of the mTOR pathway diminishes cytokine production and increases mortality.
Figure 3: Blood transcriptome analysis of human endotoxemia and critically ill septic patients with culture-confirmed systemic infection with Candida or E. coli.
Figure 4: In vitro innate immunotolerant monocytes have impaired metabolism.
Figure 5: Tolerant monocytes from septic patients show impaired metabolic pathways.
Figure 6: Immunotherapy with IFN-γ partially restores the metabolic defects by induction of the mTOR pathway.

Accession codes

Primary accessions

Gene Expression Omnibus

Referenced accessions

Gene Expression Omnibus

References

  1. Angus, D.C. & van der Poll, T. Severe sepsis and septic shock. N. Engl. J. Med. 369, 840–851 (2013).

    CAS  PubMed  Google Scholar 

  2. Shalova, I.N. et al. Human monocytes undergo functional re-programming during sepsis mediated by hypoxia-inducible factor-1α. Immunity 42, 484–498 (2015).

    CAS  PubMed  Google Scholar 

  3. Vachharajani, V., Liu, T. & McCall, C.E. Epigenetic coordination of acute systemic inflammation: potential therapeutic targets. Expert Rev. Clin. Immunol. 10, 1141–1150 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Cheng, S.C., Joosten, L.A. & Netea, M.G. The interplay between central metabolism and innate immune responses. Cytokine Growth Factor Rev. 25, 707–713 (2014).

    CAS  PubMed  Google Scholar 

  5. Carré, J.E. et al. Survival in critical illness is associated with early activation of mitochondrial biogenesis. Am. J. Respir. Crit. Care Med. 182, 745–751 (2010).

    PubMed  PubMed Central  Google Scholar 

  6. Singer, M. Cellular dysfunction in sepsis. Clin. Chest Med. 29, 655–660 (2008).

    PubMed  Google Scholar 

  7. Carré, J.E. & Singer, M. Cellular energetic metabolism in sepsis: the need for a systems approach. Biochim. Biophys. Acta 1777, 763–771 (2008).

    PubMed  Google Scholar 

  8. Belikova, I. et al. Oxygen consumption of human peripheral blood mononuclear cells in severe human sepsis. Crit. Care Med. 35, 2702–2708 (2007).

    CAS  PubMed  Google Scholar 

  9. Chen, T. et al. Redox imbalance provokes deactivation of macrophages in sepsis. Proteomics Clin. Appl. 3, 1000–1009 (2009).

    CAS  PubMed  Google Scholar 

  10. Smeekens, S.P. et al. Functional genomics identifies type I interferon pathway as central for host defense against Candida albicans. Nat. Commun. 4, 1342 (2013).

    PubMed  Google Scholar 

  11. Cheng, S.C. et al. mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity. Science 345, 1250684 (2014).

    PubMed  PubMed Central  Google Scholar 

  12. Rodríguez-Prados, J.C. et al. Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation. J. Immunol. 185, 605–614 (2010).

    PubMed  Google Scholar 

  13. Inoki, K., Ouyang, H., Li, Y. & Guan, K.L. Signaling by target of rapamycin proteins in cell growth control. Microbiol. Mol. Biol. Rev. 69, 79–100 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Choi, Y.K. & Park, K.G. Metabolic roles of AMPK and metformin in cancer cells. Mol. Cells 36, 279–287 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhou, H., Luo, Y. & Huang, S. Updates of mTOR inhibitors. Anticancer. Agents Med. Chem. 10, 571–581 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. van der Meer, A.J. et al. The selective sirtuin 1 activator SRT2104 reduces endotoxin-induced cytokine release and coagulation activation in humans. Crit. Care Med. 43, e199–e202 (2015).

    CAS  PubMed  Google Scholar 

  17. Scicluna, B.P. et al. Role of tumor necrosis factor-α in the human systemic endotoxin-induced transcriptome. PLoS One 8, e79051 (2013).

    PubMed  PubMed Central  Google Scholar 

  18. Calvano, S.E. et al. Inflamm and Host Response to Injury Large Scale Collab. Res. Program. A network-based analysis of systemic inflammation in humans. Nature 437, 1032–1037 (2005).

    CAS  PubMed  Google Scholar 

  19. Saeed, S. et al. Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science 345, 1251086 (2014).

    PubMed  PubMed Central  Google Scholar 

  20. Morris, M.C., Gilliam, E.A. & Li, L. Innate immune programing by endotoxin and its pathological consequences. Front. Immunol. 5, 680 (2014).

    PubMed  Google Scholar 

  21. Liu, T.F., Vachharajani, V.T., Yoza, B.K. & McCall, C.E. NAD+-dependent sirtuin 1 and 6 proteins coordinate a switch from glucose to fatty acid oxidation during the acute inflammatory response. J. Biol. Chem. 287, 25758–25769 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Döcke, W.D. et al. Monocyte deactivation in septic patients: restoration by IFN-γ treatment. Nat. Med. 3, 678–681 (1997).

    PubMed  Google Scholar 

  23. Leentjens, J. et al. Reversal of immunoparalysis in humans in vivo: a double-blind, placebo-controlled, randomized pilot study. Am. J. Respir. Crit. Care Med. 186, 838–845 (2012).

    CAS  PubMed  Google Scholar 

  24. Delsing, C.E. et al. Interferon-γ as adjunctive immunotherapy for invasive fungal infections: a case series. BMC Infect. Dis. 14, 166 (2014).

    PubMed  PubMed Central  Google Scholar 

  25. Zhu, L., Zhao, Q., Yang, T., Ding, W. & Zhao, Y. Cellular metabolism and macrophage functional polarization. Int. Rev. Immunol. 34, 82–100 (2015).

    PubMed  Google Scholar 

  26. Pantel, A. et al. Direct type I IFN but not MDA5/TLR3 activation of dendritic cells is required for maturation and metabolic shift to glycolysis after poly IC stimulation. PLoS Biol. 12, e1001759 (2014).

    PubMed  PubMed Central  Google Scholar 

  27. Brealey, D. et al. Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet 360, 219–223 (2002).

    CAS  PubMed  Google Scholar 

  28. Martin, F.P. et al. Metabolic assessment of gradual development of moderate experimental colitis in IL-10 deficient mice. J. Proteome Res. 8, 2376–2387 (2009).

    CAS  PubMed  Google Scholar 

  29. Vézina, C., Kudelski, A. & Sehgal, S.N. Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J. Antibiot. (Tokyo) 28, 721–726 (1975).

    Google Scholar 

  30. Weichhart, T., Hengstschläger, M. & Linke, M. Regulation of innate immune cell function by mTOR. Nat. Rev. Immunol. 15, 599–614 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Shapiro, H., Lutaty, A. & Ariel, A. Macrophages, meta-inflammation, and immuno-metabolism. ScientificWorldJournal 11, 2509–2529 (2011).

    PubMed  PubMed Central  Google Scholar 

  32. Panasyuk, G. et al. PPARγ contributes to PKM2 and HK2 expression in fatty liver. Nat. Commun. 3, 672 (2012).

    PubMed  Google Scholar 

  33. Vats, D. et al. Oxidative metabolism and PGC-1β attenuate macrophage-mediated inflammation. Cell Metab. 4, 13–24 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Drosatos, K. et al. Peroxisome proliferator-activated receptor-γ activation prevents sepsis-related cardiac dysfunction and mortality in mice. Circ Heart Fail 6, 550–562 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ferreira, A.E. et al. PPAR-γ/IL-10 axis inhibits MyD88 expression and ameliorates murine polymicrobial sepsis. J. Immunol. 192, 2357–2365 (2014).

    CAS  PubMed  Google Scholar 

  36. Dare, A.J. et al. A systematic review of experimental treatments for mitochondrial dysfunction in sepsis and multiple organ dysfunction syndrome. Free Radic. Biol. Med. 47, 1517–1525 (2009).

    CAS  PubMed  Google Scholar 

  37. Su, X. et al. Interferon-γ regulates cellular metabolism and mRNA translation to potentiate macrophage activation. Nat. Immunol. 16, 838–849 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Qiao, Y. et al. Synergistic activation of inflammatory cytokine genes by interferon-γ-induced chromatin remodeling and toll-like receptor signaling. Immunity 39, 454–469 (2013).

    CAS  PubMed  Google Scholar 

  39. Brudecki, L., Ferguson, D.A., McCall, C.E. & El Gazzar, M. MicroRNA-146a and RBM4 form a negative feed-forward loop that disrupts cytokine mRNA translation following TLR4 responses in human THP-1 monocytes. Immunol. Cell Biol. 91, 532–540 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Schmitt, M.J. et al. Interferon-γ-induced activation of Signal Transducer and Activator of Transcription 1 (STAT1) up-regulates the tumor suppressing microRNA-29 family in melanoma cells. Cell Commun. Signal. 10, 41 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Imaizumi, T. et al. IFN-γ and TNF-α synergistically induce microRNA-155 which regulates TAB2/IP-10 expression in human mesangial cells. Am. J. Nephrol. 32, 462–468 (2010).

    CAS  PubMed  Google Scholar 

  42. Tannahill, G.M. et al. Succinate is an inflammatory signal that induces IL-1(through HIF-1α. Nature 496, 238–242 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Li, P. et al. Interferon gamma (IFN-γ) disrupts energy expenditure and metabolic homeostasis by suppressing SIRT1 transcription. Nucleic Acids Res. 40, 1609–1620 (2012).

    CAS  PubMed  Google Scholar 

  44. R core team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria). http://www.R-project.org/ (2014).

  45. Klein Klouwenberg, P.M. et al. Interobserver agreement of Centers for Disease Control and Prevention criteria for classifying infections in critically ill patients. Crit. Care Med. 41, 2373–2378 (2013).

    PubMed  Google Scholar 

  46. Klein Klouwenberg, P.M. et al. MARS Consortium. Electronic implementation of a novel surveillance paradigm for ventilator-associated events. Feasibility and validation. Am. J. Respir. Crit. Care Med. 189, 947–955 (2014).

    PubMed  Google Scholar 

  47. Knaus, W.A., Draper, E.A., Wagner, D.P. & Zimmerman, J.E. APACHE II: a severity of disease classification system. Crit. Care Med. 13, 818–829 (1985).

    CAS  PubMed  Google Scholar 

  48. Gautier, L., Cope, L., Bolstad, B.M. & Irizarry, R.A. affy--analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20, 307–315 (2004).

    CAS  PubMed  Google Scholar 

  49. Bourgon, R., Gentleman, R. & Huber, W. Independent filtering increases detection power for high-throughput experiments. Proc. Natl. Acad. Sci. USA 107, 9546–9551 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Leek, J.T. & Storey, J.D. Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLoS Genet. 3, 1724–1735 (2007).

    CAS  PubMed  Google Scholar 

  51. Johnson, W.E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8, 118–127 (2007).

    PubMed  Google Scholar 

  52. Smyth, G.K. Bioinformatics and Computational Biology Solutions Using R. (eds. Gentleman, R., Carey, V., Huber, W., Irizarry, R. & Dudoit, S.) 397–420 (Springer, 2005).

  53. van Lieshout, M.H., Scicluna, B.P., Florquin, S. & van der Poll, T. NLRP3 and ASC differentially affect the lung transcriptome during pneumococcal pneumonia. Am. J. Respir. Cell Mol. Biol. 50, 699–712 (2014).

    PubMed  Google Scholar 

  54. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate-a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).

    Google Scholar 

  55. Gentleman, R.C. et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5, R80 (2004).

    PubMed  PubMed Central  Google Scholar 

  56. Dunning, M.J., Smith, M.L., Ritchie, M.E. & Tavaré, S. Beadarray: R classes and methods for Illumina bead-based data. Bioinformatics 23, 2183–2184 (2007).

    CAS  PubMed  Google Scholar 

  57. Bolstad, B.M., Irizarry, R.A., Astrand, M. & Speed, T.P. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19, 185–193 (2003).

    CAS  PubMed  Google Scholar 

  58. Kauffmann, A., Gentleman, R. & Huber, W. arrayQualityMetrics--a bioconductor package for quality assessment of microarray data. Bioinformatics 25, 415–416 (2009).

    CAS  PubMed  Google Scholar 

  59. Ho Sui, S.J., Fulton, D.L., Arenillas, D.J., Kwon, A.T. & Wasserman, W.W. oPOSSUM: integrated tools for analysis of regulatory motif over-representation. Nucleic Acids Res. 35, W245–W252 (2007).

    PubMed  PubMed Central  Google Scholar 

  60. Ho Sui, S.J. et al. oPOSSUM: identification of over-represented transcription factor binding sites in co-expressed genes. Nucleic Acids Res. 33, 3154–3164 (2005).

    PubMed  PubMed Central  Google Scholar 

  61. Chen, J., Bardes, E.E., Aronow, B.J. & Jegga, A.G. ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 37, W305–W311 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Hoeksema, M.A. et al. IFN-γ priming of macrophages represses a part of the inflammatory program and attenuates neutrophil recruitment. J. Immunol. 194, 3909–3916 (2015).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by the European Research Council (ERC-StG-310372 to M.G.N.) and the Center for Translational Molecular Medicine (Molecular Diagnosis and Risk Stratification of Sepsis project; 04I-201).

Author information

Authors and Affiliations

Authors

Contributions

S.-C.C., B.P.S., R.J.W.A., M.S.G., E.L., E.J.G.-B., M.K., G.R.M., J.A.L.W., J.L. and A.J.v.d.M. performed the experiments; B.P.S., R.J.W.A. and J.A.L.W. performed the analyses; E.J.G.-B., O.L.C., F.L.v.d.V., M.J.B., M.J.S. and P.P. were involved in the clinical studies; P.H.G.M.W., L.A.B.J., T.v.d.P. and M.G.N. designed the studies; and all authors were involved in writing and correcting the manuscript.

Corresponding authors

Correspondence to Tom van der Poll or Mihai G Netea.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Gene-expression profiles.

In Heatmap representation of multiple-comparison adjusted significant glycolysis and mTOR signaling gene expression analysis of healthy human donor PBMC samples stimulated for 4 or 24 hours with (a, b) C. albicans, and (c) E. coli LPS.

Supplementary Figure 2 Endotoxin administration in healthy donors.

Genome-wide blood gene expression analysis in healthy volunteer samples before and 4 hours after intravenous administration of E.coli LPS. (a) Volcano plot representation of gene expression alterations post-LPS (integrating log2 fold changes and multiple-comparison adjusted p-values). Red denotes over-expressed genes (log2 fold change ≥ 1); blue denotes under-expression (log2 fold change ≤ -1). Horizontal line depicts multiple comparison adjusted p=0.05. (b) Ingenuity canonical signaling pathway enrichment of over-expressed (red) and under-expressed (blue) genes showing over-expression of prototypical pro-inflammatory and anti-inflammatory pathways concomitant with under-expression of predominantly metabolic signaling pathways. Whole blood (c) and PBMCs (d) isolated before (pre-LPS) and 4 hours after in vivo LPS administration (post-LPS) were re-stimulated with RPMI medium or LPS. Supernatants were used to measure the abundance of TNFα and IL-6. *** p < 0.0001, ** p < 0.01.

Supplementary Figure 3 Transcription factor analysis.

(a, b) HIF1A, EPAS1 (HIF2A), NAMPT, PPARA, PPARG and HIF1AN expression in the human endotoxemia model (c) as well as E.coli and Candida sepsis (d). blue, under-expression; red, over-expression. (c) Diagrammatic representation of the mTOR signaling pathway with gene expression log2 fold changes overlaid (green = under-expressed). (d) Over-representation analysis of transcription factor binding site motifs showed the mTOR-dependent HIF1A transcription factor was predicted as highly active in both E.coli and Candida sepsis. (TF, transcription factor).

Supplementary Figure 4 Overview of metabolic states during sepsis.

During the acute hyperinflammatory phase, immunometabolism is up-regulated by means of the Warburg effect (up-regulated glycolysis and down-regulated oxidative phosphorylation), while during the immune paralysis state all major metabolic pathways are down-regulated; metabolic paralysis.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cheng, SC., Scicluna, B., Arts, R. et al. Broad defects in the energy metabolism of leukocytes underlie immunoparalysis in sepsis. Nat Immunol 17, 406–413 (2016). https://doi.org/10.1038/ni.3398

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.3398

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing