Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Autophagy and autophagy-related proteins in the immune system

Abstract

Autophagy is an intracellular bulk degradation system that is highly conserved in eukaryotes. The discovery of autophagy-related ('ATG') proteins in the 1990s greatly advanced the mechanistic understanding of autophagy and clarified the fact that autophagy serves important roles in various biological processes. In addition, studies have revealed other roles for the autophagic machinery beyond autophagy. In this Review, we introduce advances in the knowledge of the roles of autophagy and its components in immunity, including innate immunity, inflammatory responses and adaptive immunity.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: The autophagy pathway.

Kim Caesar/Nature Publishing Group

Figure 2: Xenophagy and LAP.

Kim Caesar/Nature Publishing Group

Figure 3: Autophagy suppresses the inflammasome-mediated production of IL-1β.

Kim Caesar/Nature Publishing Group

Figure 4: ATG proteins in MHC-restricted antigen presentation.

Kim Caesar/Nature Publishing Group

References

  1. Mizushima, N. & Komatsu, M. Autophagy: renovation of cells and tissues. Cell 147, 728–741 (2011).

    CAS  PubMed  Article  Google Scholar 

  2. Clark, S.L. Jr. Cellular differentiation in the kidneys of newborn mice studies with the electron microscope. J. Biophys. Biochem. Cytol. 3, 349–362 (1957).

    PubMed  PubMed Central  Article  Google Scholar 

  3. Novikoff, A.B. The proximal tubule cell in experimental hydronephrosis. J. Biophys. Biochem. Cytol. 6, 136–138 (1959).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. Ohsumi, Y. Historical landmarks of autophagy research. Cell Res. 24, 9–23 (2014).

    CAS  PubMed  Article  Google Scholar 

  5. Itakura, E. & Mizushima, N. Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy 6, 764–776 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. Kageyama, S. et al. The LC3 recruitment mechanism is separate from Atg9L1-dependent membrane formation in the autophagic response against Salmonella. Mol. Biol. Cell 22, 2290–2300 (2011). Study demonstrating that early ATG proteins are recruited to intracellular Salmonella.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. Matsunaga, K. et al. Autophagy requires endoplasmic reticulum targeting of the PI3-kinase complex via Atg14L. J. Cell Biol. 190, 511–521 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. Hamasaki, M. et al. Autophagosomes form at ER-mitochondria contact sites. Nature 495, 389–393 (2013). Study identifying ER-mitochondria contact sites as the initiation sites for autophagosome formation.

    CAS  PubMed  Article  Google Scholar 

  9. Dooley, H.C. et al. WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12–5-16L1. Mol. Cell 55, 238–252 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. Mizushima, N. et al. Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J. Cell Biol. 152, 657–668 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. Nakatogawa, H., Suzuki, K., Kamada, Y. & Ohsumi, Y. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat. Rev. Mol. Cell Biol. 10, 458–467 (2009).

    CAS  PubMed  Article  Google Scholar 

  12. Fujita, N. et al. Differential involvement of Atg16L1 in Crohn disease and canonical autophagy: analysis of the organization of the Atg16L1 complex in fibroblasts. J. Biol. Chem. 284, 32602–32609 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. Fujita, N. et al. The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol. Biol. Cell 19, 2092–2100 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. Kabeya, Y. et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19, 5720–5728 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. Fujita, N. et al. An Atg4B mutant hampers the lipidation of LC3 paralogues and causes defects in autophagosome closure. Mol. Biol. Cell 19, 4651–4659 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. Sou, Y. et al. The Atg8 conjugation system is indispensable for proper development of autophagic isolation membranes in mice. Mol. Biol. Cell 19, 4762–4775 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. Sanjuan, M.A. et al. Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature 450, 1253–1257 (2007).  Identification of LAP in this study.

    CAS  PubMed  Article  Google Scholar 

  18. Flannagan, R.S., Cosío, G. & Grinstein, S. Antimicrobial mechanisms of phagocytes and bacterial evasion strategies. Nat. Rev. Microbiol. 7, 355–366 (2009).

    CAS  PubMed  Article  Google Scholar 

  19. Cossart, P. & Sansonetti, P.J. Bacterial invasion: the paradigms of enteroinvasive pathogens. Science 304, 242–248 (2004).

    CAS  PubMed  Article  Google Scholar 

  20. Nakagawa, I. et al. Autophagy defends cells against invading group A Streptococcus. Science 306, 1037–1040 (2004). Study clarifying, through the use of and LC3 and cells deficient in genes encoding ATG proteins, the fact that autophagy can target intracellular bacteria.

    CAS  PubMed  Article  Google Scholar 

  21. Gutierrez, M.G. et al. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119, 753–766 (2004).

    CAS  PubMed  Article  Google Scholar 

  22. Ogawa, M. et al. Escape of intracellular Shigella from autophagy. Science 307, 727–731 (2005).

    CAS  PubMed  Article  Google Scholar 

  23. Birmingham, C.L., Smith, A.C., Bakowski, M.A., Yoshimori, T. & Brumell, J.H. Autophagy controls Salmonella infection in response to damage to the Salmonella-containing vacuole. J. Biol. Chem. 281, 11374–11383 (2006).

    CAS  PubMed  Article  Google Scholar 

  24. Py, B.F., Lipinski, M.M. & Yuan, J. Autophagy limits Listeria monocytogenes intracellular growth in the early phase of primary infection. Autophagy 3, 117–125 (2007).

    CAS  PubMed  Article  Google Scholar 

  25. Huang, J. & Brumell, J.H. Bacteria-autophagy interplay: a battle for survival. Nat. Rev. Microbiol. 12, 101–114 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. Welchman, R.L., Gordon, C. & Mayer, R.J. Ubiquitin and ubiquitin-like proteins as multifunctional signals. Nat. Rev. Mol. Cell Biol. 6, 599–609 (2005).

    CAS  PubMed  Article  Google Scholar 

  27. Kim, P.K., Hailey, D.W., Mullen, R.T. & Lippincott-Schwartz, J. Ubiquitin signals autophagic degradation of cytosolic proteins and peroxisomes. Proc. Natl. Acad. Sci. USA 105, 20567–20574 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. Fujita, N. & Yoshimori, T. Ubiquitination-mediated autophagy against invading bacteria. Curr. Opin. Cell Biol. 23, 492–497 (2011).

    CAS  PubMed  Article  Google Scholar 

  29. Ng, A.C.Y. et al. Human leucine-rich repeat proteins: a genome-wide bioinformatic categorization and functional analysis in innate immunity. Proc. Natl. Acad. Sci. USA 108, 4631–4638 (2011).

    CAS  Article  PubMed  Google Scholar 

  30. Huett, A. et al. The LRR and RING domain protein LRSAM1 is an E3 ligase crucial for ubiquitin-dependent autophagy of intracellular Salmonella Typhimurium. Cell Host Microbe 12, 778–790 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. Manzanillo, P.S. et al. The ubiquitin ligase parkin mediates resistance to intracellular pathogens. Nature 501, 512–516 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. Narendra, D., Tanaka, A., Suen, D.-F. & Youle, R.J. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183, 795–803 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. Dupont, N. et al. Shigella phagocytic vacuolar membrane remnants participate in the cellular response to pathogen invasion and are regulated by autophagy. Cell Host Microbe 6, 137–149 (2009).

    CAS  PubMed  Article  Google Scholar 

  34. Kobayashi, S. et al. Artificial induction of autophagy around polystyrene beads in nonphagocytic cells. Autophagy 6, 36–45 (2010).

    CAS  PubMed  Article  Google Scholar 

  35. Fujita, N. et al. Recruitment of the autophagic machinery to endosomes during infection is mediated by ubiquitin. J. Cell Biol. 203, 115–128 (2013). Study demonstrating that ubiquitination is required for the recruitment of autophagy-related proteins to ruptured endosomes, and clarifying the mechanism for the recruitment of ATG16L1 to ubiquitinated endosomes.

    PubMed  PubMed Central  Article  Google Scholar 

  36. Hung, Y.-H., Chen, L.M.-W., Yang, J.-Y. & Yuan Yang, W. Spatiotemporally controlled induction of autophagy-mediated lysosome turnover. Nat. Commun. 4, 2111 (2013).

    PubMed  Article  CAS  Google Scholar 

  37. Maejima, I. et al. Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury. EMBO J. 32, 2336–2347 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. Thurston, T.L.M., Wandel, M.P., von Muhlinen, N., Foeglein, A. & Randow, F. Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature 482, 414–418 (2012). Study identifying galectin-8 as an ubiquitin-independent mediator of the recruitment of NDP52 to ruptured endosomes.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. Dreux, M. & Chisari, F.V. Viruses and the autophagy machinery. Cell Cycle 9, 1295–1307 (2010).

    CAS  PubMed  Article  Google Scholar 

  40. Yordy, B., Tal, M.C., Hayashi, K., Arojo, O. & Iwasaki, A. Autophagy and selective deployment of Atg proteins in antiviral defense. Int. Immunol. 25, 1–10 (2013).

    CAS  PubMed  Article  Google Scholar 

  41. Liang, X.H. et al. Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein. J. Virol. 72, 8586–8596 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. Orvedahl, A. et al. Autophagy protects against Sindbis virus infection of the central nervous system. Cell Host Microbe 7, 115–127 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. Orvedahl, A. et al. Image-based genome-wide siRNA screen identifies selective autophagy factors. Nature 480, 113–117 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. Kyei, G.B. et al. Autophagy pathway intersects with HIV-1 biosynthesis and regulates viral yields in macrophages. J. Cell Biol. 186, 255–268 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. Shoji-Kawata, S. et al. Identification of a candidate therapeutic autophagy-inducing peptide. Nature 494, 201–206 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. Martinez, J. et al. Microtubule-associated protein 1 light chain 3 α (LC3)-associated phagocytosis is required for the efficient clearance of dead cells. Proc. Natl. Acad. Sci. USA 108, 17396–17401 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. Martinez, J. et al. Molecular characterization of LC3-associated phagocytosis reveals distinct roles for Rubicon, NOX2 and autophagy proteins. Nat. Cell Biol. 17, 893–906 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. Henault, J. et al. Noncanonical autophagy is required for type I interferon secretion in response to DNA-immune complexes. Immunity 37, 986–997 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. Starr, T. et al. Selective subversion of autophagy complexes facilitates completion of the Brucella intracellular cycle. Cell Host Microbe 11, 33–45 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. Zhao, Z. et al. Autophagosome-independent essential function for the autophagy protein Atg5 in cellular immunity to intracellular pathogens. Cell Host Microbe 4, 458–469 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. Hwang, S. et al. Nondegradative role of Atg5-Atg12/ Atg16L1 autophagy protein complex in antiviral activity of interferon γ. Cell Host Microbe 11, 397–409 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. Taylor, M.P., Burgon, T.B., Kirkegaard, K. & Jackson, W.T. Role of microtubules in extracellular release of poliovirus. J. Virol. 83, 6599–6609 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. Robinson, S.M. et al. Coxsackievirus B exits the host cell in shed microvesicles displaying autophagosomal markers. PLoS Pathog. 10, e1004045 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  54. Miao, Y., Li, G., Zhang, X., Xu, H. & Abraham, S.N. A TRP channel senses lysosome neutralization by pathogens to trigger their expulsion. Cell 161, 1306–1319 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. Kawai, T. & Akira, S. The roles of TLRs, RLRs and NLRs in pathogen recognition. Int. Immunol. 21, 317–337 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. Deretic, V., Saitoh, T. & Akira, S. Autophagy in infection, inflammation and immunity. Nat. Rev. Immunol. 13, 722–737 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. Latz, E., Xiao, T.S. & Stutz, A. Activation and regulation of the inflammasomes. Nat. Rev. Immunol. 13, 397–411 (2013).

    CAS  PubMed  Article  Google Scholar 

  58. Hampe, J. et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat. Genet. 39, 207–211 (2007).

    CAS  Article  PubMed  Google Scholar 

  59. Rioux, J.D. et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat. Genet. 39, 596–604 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. Saitoh, T. et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1β production. Nature 456, 264–268 (2008). First study to report that autophagy-deficiency enhances inflammasome activation.

    CAS  Article  PubMed  Google Scholar 

  61. Murthy, A. et al. A Crohn's disease variant in Atg16l1 enhances its degradation by caspase 3. Nature 506, 456–462 (2014). Study providing evidence that the Crohn's disease–associated variant of ATG16L1 enhances inflammation in vivo.

    CAS  PubMed  Article  Google Scholar 

  62. Lassen, K.G. et al. Atg16L1 T300A variant decreases selective autophagy resulting in altered cytokine signaling and decreased antibacterial defense. Proc. Natl. Acad. Sci. USA 111, 7741–7746 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  63. Plantinga, T.S. et al. Crohn's disease-associated ATG16L1 polymorphism modulates pro-inflammatory cytokine responses selectively upon activation of NOD2. Gut 60, 1229–1235 (2011).

    CAS  PubMed  Article  Google Scholar 

  64. Cadwell, K. et al. Virus-plus-susceptibility gene interaction determines Crohn's disease gene Atg16L1 phenotypes in intestine. Cell 141, 1135–1145 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. Zhou, R., Yazdi, A.S., Menu, P. & Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature 469, 221–225 (2011). First study to report that autophagy targets old or dysfunctional mitochondria to limit inflammasome activation.

    CAS  Article  PubMed  Google Scholar 

  66. Nakahira, K. et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol. 12, 222–230 (2011).

    CAS  Article  PubMed  Google Scholar 

  67. Lupfer, C. et al. Receptor interacting protein kinase 2-mediated mitophagy regulates inflammasome activation during virus infection. Nat. Immunol. 14, 480–488 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  68. Wen, H. et al. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat. Immunol. 12, 408–415 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. Razani, B. et al. Autophagy links inflammasomes to atherosclerotic progression. Cell Metab. 15, 534–544 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  70. Wang, C. et al. Atg16L1 deficiency confers protection from uropathogenic Escherichia coli infection in vivo. Proc. Natl. Acad. Sci. USA 109, 11008–11013 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  71. Shaw, S.Y. et al. Selective modulation of autophagy, innate immunity, and adaptive immunity by small molecules. ACS Chem. Biol. 8, 2724–2733 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  72. Guo, W. et al. Small molecule-driven mitophagy-mediated NLRP3 inflammasome inhibition is responsible for the prevention of colitis-associated cancer. Autophagy 10, 972–985 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  73. Abderrazak, A. et al. Anti-inflammatory and anti-atherogenic effects of the inflammasome NLRP3 inhibitor, arglabin, in ApoE2.Ki mice fed a high fat diet. Circulation 131, 1061–1070 (2015).

    CAS  PubMed  Article  Google Scholar 

  74. Shi, C.-S. et al. Activation of autophagy by inflammatory signals limits IL-1β production by targeting ubiquitinated inflammasomes for destruction. Nat. Immunol. 13, 255–263 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. Harris, J. et al. Autophagy controls IL-1β secretion by targeting pro-IL-1β for degradation. J. Biol. Chem. 286, 9587–9597 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  76. Dupont, N. et al. Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1β. EMBO J. 30, 4701–4711 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. Lamkanfi, M. & Dixit, V.M. Mechanisms and functions of inflammasomes. Cell 157, 1013–1022 (2014).

    CAS  Article  PubMed  Google Scholar 

  78. Meunier, E. et al. Caspase-11 activation requires lysis of pathogen-containing vacuoles by IFN-induced GTPases. Nature 509, 366–370 (2014).

    CAS  PubMed  Article  Google Scholar 

  79. Netea, M.G., van de Veerdonk, F.L., van der Meer, J.W.M., Dinarello, C.A. & Joosten, L.A.B. Inflammasome-independent regulation of IL-1-family cytokines. Annu. Rev. Immunol. 33, 49–77 (2014).

    PubMed  Article  CAS  Google Scholar 

  80. Castillo, E.F. et al. Autophagy protects against active tuberculosis by suppressing bacterial burden and inflammation. Proc. Natl. Acad. Sci. USA 109, E3168–E3176 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  81. Kawai, T. & Akira, S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol. 11, 373–384 (2010).

    CAS  Article  PubMed  Google Scholar 

  82. Yoneyama, M., Onomoto, K., Jogi, M., Akaboshi, T. & Fujita, T. Viral RNA detection by RIG-I-like receptors. Curr. Opin. Immunol. 32, 48–53 (2015).

    CAS  PubMed  Article  Google Scholar 

  83. Cai, X., Chiu, Y.-H. & Chen, Z.J. The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling. Mol. Cell 54, 289–296 (2014).

    CAS  PubMed  Article  Google Scholar 

  84. Lee, H.K., Lund, J.M., Ramanathan, B., Mizushima, N. & Iwasaki, A. Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science 315, 1398–1401 (2007). First study to report involvement of ATG proteins in PRR-mediated innate immune response.

    CAS  PubMed  Article  Google Scholar 

  85. Tal, M.C. et al. Absence of autophagy results in reactive oxygen species-dependent amplification of RLR signaling. Proc. Natl. Acad. Sci. USA 106, 2770–2775 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  86. Jounai, N. et al. The Atg5 Atg12 conjugate associates with innate antiviral immune responses. Proc. Natl. Acad. Sci. USA 104, 14050–14055 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  87. Lei, Y. et al. The mitochondrial proteins NLRX1 and TUFM form a complex that regulates type I interferon and autophagy. Immunity 36, 933–946 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  88. Saitoh, T. et al. Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response. Proc. Natl. Acad. Sci. USA 106, 20842–20846 (2009). First study to report involvement of ATG proteins in cytosolic dsDNA–induced innate immune response.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  89. Konno, H., Konno, K. & Barber, G.N. Cyclic dinucleotides trigger ULK1 (ATG1) phosphorylation of STING to prevent sustained innate immune signaling. Cell 155, 688–698 (2013).

    CAS  PubMed  Article  Google Scholar 

  90. Liang, Q. et al. Crosstalk between the cGAS DNA sensor and Beclin-1 autophagy protein shapes innate antimicrobial immune responses. Cell Host Microbe 15, 228–238 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  91. Watson, R.O., Manzanillo, P.S. & Cox, J.S. Extracellular M. tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway. Cell 150, 803–815 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  92. Dey, B. et al. A bacterial cyclic dinucleotide activates the cytosolic surveillance pathway and mediates innate resistance to tuberculosis. Nat. Med. 21, 401–406 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  93. Collins, A.C. et al. Cyclic GMP-AMP synthase is an innate immune DNA sensor for Mycobacterium tuberculosis. Cell Host Microbe 17, 820–828 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  94. Blum, J.S., Wearsch, P.A. & Cresswell, P. Pathways of antigen processing. Annu. Rev. Immunol. 31, 443–473 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  95. Romao, S., Gannage, M. & Münz, C. Checking the garbage bin for problems in the house, or how autophagy assists in antigen presentation to the immune system. Semin. Cancer Biol. 23, 391–396 (2013).

    CAS  PubMed  Article  Google Scholar 

  96. Paludan, C. et al. Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science 307, 593–596 (2005).

    CAS  PubMed  Article  Google Scholar 

  97. Leung, C.S., Haigh, T.A., Mackay, L.K., Rickinson, A.B. & Taylor, G.S. Nuclear location of an endogenously expressed antigen, EBNA1, restricts access to macroautophagy and the range of CD4 epitope display. Proc. Natl. Acad. Sci. USA 107, 2165–2170 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  98. Jagannath, C. et al. Autophagy enhances the efficacy of BCG vaccine by increasing peptide presentation in mouse dendritic cells. Nat. Med. 15, 267–276 (2009).

    CAS  PubMed  Article  Google Scholar 

  99. Schmid, D., Pypaert, M. & Münz, C. Antigen-loading compartments for major histocompatibility complex class II molecules continuously receive input from autophagosomes. Immunity 26, 79–92 (2007). Study demonstrating that autophagosomes deliver cytosolic antigen to MHC class II loading compartments.

    CAS  PubMed  Article  Google Scholar 

  100. Jin, Y. et al. Regulation of SIV antigen-specific CD4+ T cellular immunity via autophagosome-mediated MHC II molecule-targeting antigen presentation in mice. PLoS ONE 9, e93143 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  101. Nedjic, J., Aichinger, M., Emmerich, J., Mizushima, N. & Klein, L. Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance. Nature 455, 396–400 (2008).

    CAS  PubMed  Article  Google Scholar 

  102. Kasai, M. et al. Autophagic compartments gain access to the MHC class II compartments in thymic epithelium. J. Immunol. 183, 7278–7285 (2009).

    CAS  PubMed  Article  Google Scholar 

  103. Aichinger, M., Wu, C., Nedjic, J. & Klein, L. Macroautophagy substrates are loaded onto MHC class II of medullary thymic epithelial cells for central tolerance. J. Exp. Med. 210, 287–300 (2013). Study demonstrating that autophagic cargo is presented on MHC class II molecules for negative selection of CD4+ T cells in the thymus.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  104. Florey, O., Kim, S.E., Sandoval, C.P., Haynes, C.M. & Overholtzer, M. Autophagy machinery mediates macroendocytic processing and entotic cell death by targeting single membranes. Nat. Cell Biol. 13, 1335–1343 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  105. Romao, S. et al. Autophagy proteins stabilize pathogen-containing phagosomes for prolonged MHC II antigen processing. J. Cell Biol. 203, 757–766 (2013). Study demonstrating that LAP retains endocytosed antigen for prolonged presentation by MHC class II to CD4+ T cells.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  106. Ma, J., Becker, C., Lowell, C.A. & Underhill, D.M. Dectin-1-triggered recruitment of light chain 3 protein to phagosomes facilitates major histocompatibility complex class II presentation of fungal-derived antigens. J. Biol. Chem. 287, 34149–34156 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  107. Ma, J., Becker, C., Reyes, C. & Underhill, D.M. Cutting edge: FYCO1 recruitment to dectin-1 phagosomes is accelerated by light chain 3 protein and regulates phagosome maturation and reactive oxygen production. J. Immunol. 192, 1356–1360 (2014).

    CAS  PubMed  Article  Google Scholar 

  108. Lee, H.K. et al. In vivo requirement for Atg5 in antigen presentation by dendritic cells. Immunity 32, 227–239 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  109. Ireland, J.M. & Unanue, E.R. Autophagy in antigen-presenting cells results in presentation of citrullinated peptides to CD4 T cells. J. Exp. Med. 208, 2625–2632 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  110. Chaturvedi, A., Dorward, D. & Pierce, S.K. The B cell receptor governs the subcellular location of Toll-like receptor 9 leading to hyperresponses to DNA-containing antigens. Immunity 28, 799–809 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  111. Pengo, N. et al. Plasma cells require autophagy for sustainable immunoglobulin production. Nat. Immunol. 14, 298–305 (2013). Study demonstrating that plasma cells require autophagy for their antibody-producing function.

    CAS  PubMed  Article  Google Scholar 

  112. Wenger, T. et al. Autophagy inhibition promotes defective neosynthesized proteins storage in ALIS, and induces redirection toward proteasome processing and MHCI-restricted presentation. Autophagy 8, 350–363 (2012).

    CAS  PubMed  Article  Google Scholar 

  113. Kristensen, A.R. et al. Ordered organelle degradation during starvation-induced autophagy. Mol. Cell. Proteomics 7, 2419–2428 (2008).

    CAS  PubMed  Article  Google Scholar 

  114. Cuervo, A.M., Palmer, A., Rivett, A.J. & Knecht, E. Degradation of proteasomes by lysosomes in rat liver. Eur. J. Biochem. 227, 792–800 (1995).

    CAS  PubMed  Article  Google Scholar 

  115. Marshall, R.S., Li, F., Gemperline, D.C., Book, A.J. & Vierstra, R.D. Autophagic degradation of the 26S proteasome is mediated by the dual ATG8/ubiquitin receptor RPN10 in Arabidopsis. Mol. Cell 58, 1053–1066 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  116. English, L. et al. Autophagy enhances the presentation of endogenous viral antigens on MHC class I molecules during HSV-1 infection. Nat. Immunol. 10, 480–487 (2009).

    CAS  PubMed  Article  Google Scholar 

  117. Tey, S.-K. & Khanna, R. Autophagy mediates transporter associated with antigen processing-independent presentation of viral epitopes through MHC class I pathway. Blood 120, 994–1004 (2012). Study demonstrating that autophagy can contribute to the loading of antigen onto MHC class I molecules under TAP-blocking conditions.

    CAS  PubMed  Article  Google Scholar 

  118. Li, B. et al. Autophagy facilitates major histocompatibility complex class I expression induced by IFN-γ in B16 melanoma cells. Cancer Immunol. Immunother. 59, 313–321 (2010).

    CAS  PubMed  Article  Google Scholar 

  119. Johnstone, C. et al. Exogenous, TAP-independent lysosomal presentation of a respiratory syncytial virus CTL epitope. Immunol. Cell Biol. 90, 978–982 (2012).

    CAS  PubMed  Article  Google Scholar 

  120. Blanchet, F.P. et al. Human immunodeficiency Virus-1 inhibition of immunoamphisomes in dendritic cells impairs early innate and adaptive immune responses. Immunity 32, 654–669 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  121. Fiegl, D. et al. Amphisomal route of MHC class I cross-presentation in bacteria-infected dendritic cells. J. Immunol. 190, 2791–2806 (2013).

    CAS  PubMed  Article  Google Scholar 

  122. De Luca, A. et al. CD4+ T cell vaccination overcomes defective cross-presentation of fungal antigens in a mouse model of chronic granulomatous disease. J. Clin. Invest. 122, 1816–1831 (2012).

    CAS  PubMed  Article  Google Scholar 

  123. Duran, J.M., Anjard, C., Stefan, C., Loomis, W.F. & Malhotra, V. Unconventional secretion of Acb1 is mediated by autophagosomes. J. Cell Biol. 188, 527–536 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  124. Manjithaya, R., Anjard, C., Loomis, W.F. & Subramani, S. Unconventional secretion of Pichia pastoris Acb1 is dependent on GRASP protein, peroxisomal functions, and autophagosome formation. J. Cell Biol. 188, 537–546 (2010). Two studies (refs. 123,124) establishing the fact that the autophagic machinery contributes to signal peptide–independent secretion.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  125. Thorburn, J. et al. Autophagy regulates selective HMGB1 release in tumor cells that are destined to die. Cell Death Differ. 16, 175–183 (2009).

    CAS  PubMed  Article  Google Scholar 

  126. Martins, I. et al. Molecular mechanisms of ATP secretion during immunogenic cell death. Cell Death Differ. 21, 79–91 (2014).

    CAS  PubMed  Article  Google Scholar 

  127. DeSelm, C.J. et al. Autophagy proteins regulate the secretory component of osteoclastic bone resorption. Dev. Cell 21, 966–974 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  128. Jackson, W.T. et al. Subversion of cellular autophagosomal machinery by RNA viruses. PLoS Biol. 3, e156 (2005).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  129. Nowag, H. et al. Macroautophagy proteins assist Epstein Barr virus production and Get incorporated into the virus particles. EBioMedicine 1, 116–125 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  130. Uhl, M. et al. Autophagy within the antigen donor cell facilitates efficient antigen cross-priming of virus-specific CD8+ T cells. Cell Death Differ. 16, 991–1005 (2009).

    CAS  PubMed  Article  Google Scholar 

  131. Li, Y. et al. Efficient cross-presentation depends on autophagy in tumor cells. Cancer Res. 68, 6889–6895 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  132. Ye, W. et al. Cross-presentation of viral antigens in dribbles leads to efficient activation of virus-specific human memory T cells. J. Transl. Med. 12, 100 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  133. Mortensen, M. et al. The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance. J. Exp. Med. 208, 455–467 (2011). Study demonstrating which hematopoietic lineages requires autophagy for their development.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  134. Pua, H.H., Dzhagalov, I., Chuck, M., Mizushima, N. & He, Y.-W. A critical role for the autophagy gene Atg5 in T cell survival and proliferation. J. Exp. Med. 204, 25–31 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  135. Arsov, I. et al. A role for autophagic protein beclin 1 early in lymphocyte development. J. Immunol. 186, 2201–2209 (2011).

    CAS  PubMed  Article  Google Scholar 

  136. Pua, H.H., Guo, J., Komatsu, M. & He, Y.-W. Autophagy is essential for mitochondrial clearance in mature T lymphocytes. J. Immunol. 182, 4046–4055 (2009).

    CAS  Article  PubMed  Google Scholar 

  137. Farfariello, V., Amantini, C. & Santoni, G. Transient receptor potential vanilloid 1 activation induces autophagy in thymocytes through ROS-regulated AMPK and Atg4C pathways. J. Leukoc. Biol. 92, 421–431 (2012).

    CAS  PubMed  Article  Google Scholar 

  138. Willinger, T. & Flavell, R.A. Canonical autophagy dependent on the class III phosphoinositide-3 kinase Vps34 is required for naive T-cell homeostasis. Proc. Natl. Acad. Sci. USA 109, 8670–8675 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  139. Henson, S.M. et al. p38 signaling inhibits mTORC1-independent autophagy in senescent human CD8+ T cells. J. Clin. Invest. 124, 4004–4016 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  140. Jia, W., Pua, H.H., Li, Q.-J. & He, Y.-W. Autophagy regulates endoplasmic reticulum homeostasis and calcium mobilization in T lymphocytes. J. Immunol. 186, 1564–1574 (2011).

    CAS  PubMed  Article  Google Scholar 

  141. Parekh, V.V. et al. Impaired autophagy, defective T cell homeostasis, and a wasting syndrome in mice with a T cell-specific deletion of Vps34. J. Immunol. 190, 5086–5101 (2013).

    CAS  PubMed  Article  Google Scholar 

  142. Kovacs, J.R. et al. Autophagy promotes T-cell survival through degradation of proteins of the cell death machinery. Cell Death Differ. 19, 144–152 (2012).

    CAS  PubMed  Article  Google Scholar 

  143. Puleston, D. J. et al. Autophagy is a critical regulator of memory CD8+ T cell formation. eLife 3, e03706 (2014).

    Article  PubMed Central  Google Scholar 

  144. Xu, X. et al. Autophagy is essential for effector CD8+ T cell survival and memory formation. Nat. Immunol. 15, 1152–1161 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  145. Miller, B.C. et al. The autophagy gene ATG5 plays an essential role in B lymphocyte development. Autophagy 4, 309–314 (2008).

    CAS  PubMed  Article  Google Scholar 

  146. Conway, K.L. et al. ATG5 regulates plasma cell differentiation. Autophagy 9, 528–537 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  147. Milan, E. et al. A plastic SQSTM1/p62-dependent autophagic reserve maintains proteostasis and determines proteasome inhibitor susceptibility in multiple myeloma cells. Autophagy 11, 1161–1178 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  148. Chen, M. et al. Essential role for autophagy in the maintenance of immunological memory against influenza infection. Nat. Med. 20, 503–510 (2014). Study demonstrating that the maintenance of memory B cells requires autophagy.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  149. Benjamin, J.L., Sumpter, R. Jr., Levine, B. & Hooper, L.V. Intestinal epithelial autophagy is essential for host defense against invasive bacteria. Cell Host Microbe 13, 723–734 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  150. Conway, K.L. et al. Atg16l1 is required for autophagy in intestinal epithelial cells and protection of mice from Salmonella infection. Gastroenterology 145, 1347–1357 (2013).

    CAS  PubMed  Article  Google Scholar 

  151. Yano, T. et al. Autophagic control of listeria through intracellular innate immune recognition in Drosophila. Nat. Immunol. 9, 908–916 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  152. Shelly, S., Lukinova, N., Bambina, S., Berman, A. & Cherry, S. Autophagy is an essential component of Drosophila immunity against vesicular stomatitis virus. Immunity 30, 588–598 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  153. Jia, K. et al. Autophagy genes protect against Salmonella typhimurium infection and mediate insulin signaling-regulated pathogen resistance. Proc. Natl. Acad. Sci. USA 106, 14564–14569 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  154. Cadwell, K. et al. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 456, 259–263 (2008). Study demonstrating that ATG16L1 and ATG5 are required for maintenance of the granule-secretion pathway in Paneth cells in the intestine.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  155. Marchiando, A.M. et al. A deficiency in the autophagy gene Atg16L1 enhances resistance to enteric bacterial infection. Cell Host Microbe 14, 216–224 (2013).

    CAS  PubMed  Article  Google Scholar 

  156. Xu, Y. et al. Toll-like receptor 4 is a sensor for autophagy associated with innate immunity. Immunity 27, 135–144 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  157. Delgado, M.A., Elmaoued, R.A., Davis, A.S., Kyei, G. & Deretic, V. Toll-like receptors control autophagy. EMBO J. 27, 1110–1121 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  158. Travassos, L.H. et al. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat. Immunol. 11, 55–62 (2010).

    CAS  PubMed  Article  Google Scholar 

  159. Cooney, R. et al. NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat. Med. 16, 90–97 (2010).

    CAS  PubMed  Article  Google Scholar 

  160. Jounai, N. et al. NLRP4 negatively regulates autophagic processes through an association with Beclin1. J. Immunol. 186, 1646–1655 (2011).

    CAS  PubMed  Article  Google Scholar 

  161. Yanai, H. et al. Conditional ablation of HMGB1 in mice reveals its protective function against endotoxemia and bacterial infection. Proc. Natl. Acad. Sci. USA 110, 20699–20704 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  162. Tang, D. et al. Endogenous HMGB1 regulates autophagy. J. Cell Biol. 190, 881–892 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  163. Espert, L. et al. Autophagy is involved in T cell death after binding of HIV-1 envelope proteins to CXCR4. J. Clin. Invest. 116, 2161–2172 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  164. Singh, S.B., Davis, A.S., Taylor, G.A. & Deretic, V. Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science 313, 1438–1441 (2006).

    CAS  PubMed  Article  Google Scholar 

  165. Keller, C.W. et al. TNF-α induces macroautophagy and regulates MHC class II expression in human skeletal muscle cells. J. Biol. Chem. 286, 3970–3980 (2011).

    CAS  PubMed  Article  Google Scholar 

  166. Mostowy, S. et al. p62 and NDP52 proteins target intracytosolic Shigella and Listeria to different autophagy pathways. J. Biol. Chem. 286, 26987–26995 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  167. Pilli, M. et al. TBK-1 promotes autophagy-mediated antimicrobial defense by controlling autophagosome maturation. Immunity 37, 223–234 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  168. Harris, J. et al. T helper 2 cytokines inhibit autophagic control of intracellular Mycobacterium tuberculosis. Immunity 27, 505–517 (2007).

    CAS  PubMed  Article  Google Scholar 

  169. Shen, S. et al. Cytoplasmic STAT3 represses autophagy by inhibiting PKR activity. Mol. Cell 48, 667–680 (2012).

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

Supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan (S.T.S., T.S. and Y.T.), the Japan Agency for Medical Research and Development CREST (S.T.S., T.S. and Y.T.), Cancer Research Switzerland (KFS-3234-08-2013 for H.N. and C.M.), Worldwide Cancer Research (14-1033 for H.N. and C.M.), the clinical research programs KFSPMS and KFSPHHLD of the University of Zurich (H.N. and C.M.), the Baugarten Foundation (H.N. and C.M.), the Sobek Foundation (H.N. and C.M.), Fondation Acteria (H.N. and C.M.), the Swiss Vaccine Research Institute (H.N. and C.M.) and the Swiss National Science Foundation (310030_143979 and CRSII3_136241 for H.N. and C.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamotsu Yoshimori.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shibutani, S., Saitoh, T., Nowag, H. et al. Autophagy and autophagy-related proteins in the immune system. Nat Immunol 16, 1014–1024 (2015). https://doi.org/10.1038/ni.3273

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.3273

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing