Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Innate immune memory: a paradigm shift in understanding host defense

Researchers gathered at the Wellcome Trust Genome Campus in Hinxton, Cambridge, for the first Innate Immune Memory Conference dedicated to the adaptive characteristics of innate immunity, to further the understanding of this newly described immunological process that probably has a central role in host defense and inflammation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1

Marina Corral Spence/Nature Publishing Group

Figure 2: Immune memory responses in vertebrates comprise both conventional T cell memory responses (a) and innate immune memory dependent on myeloid cells, NK cells and innate lymphocyte populations such as NKT cells, γβ T cells and ILCs (b).

Marina Corral Spence/Nature Publishing Group

Figure 3: Integration of immunological and metabolic pathways in trained monocytes, which lead to a shift toward aerobic glycolysis (Warburg effects), as well as epigenetic changes at the level of histone methylation and acetylation.

Marina Corral Spence/Nature Publishing Group

References

  1. 1

    Gellert, M. Annu. Rev. Biochem. 71, 101–132 (2002).

    CAS  Article  Google Scholar 

  2. 2

    Murphy, M., Travers, P. & Walport, M. Janeway's Immunobiology, Seventh Edition (2007).

    Google Scholar 

  3. 3

    Kumagai, Y. & Akira, S. J. Allergy Clin. Immunol. 125, 985–992 (2011).

    Article  Google Scholar 

  4. 4

    Medzhitov, R. & Janeway, C.A. Jr. Science 296, 298–300 (2002).

    CAS  Article  Google Scholar 

  5. 5

    Netea, M.G., Quintin, J. & van der Meer, J.W. Cell Host Microbe 9, 355–361 (2011).

    CAS  Article  Google Scholar 

  6. 6

    Levy, O. & Netea, M.G. Pediatr. Res. 75, 184–188 (2014).

    CAS  Article  Google Scholar 

  7. 7

    Durrant, W.E. & Dong, X. Annu. Rev. Phytopathol. 42, 185–209 (2004).

    CAS  Article  Google Scholar 

  8. 8

    Pham, L.N., Dionne, M.S., Shirasu-Hiza, M. & Schneider, D.S. PLoS Pathog. 3, e26 (2007).

    Article  Google Scholar 

  9. 9

    Rodrigues, J., Brayner, F.A., Alves, L.C., Dixit, R. & Barillas-Mury, C. Science 329, 1353–1355 (2010).

    CAS  Article  Google Scholar 

  10. 10

    Tannahill, G.M. et al. Nature 496, 238–242 (2013).

    CAS  Article  Google Scholar 

  11. 11

    Liu, T.F., Vachharajani, V.T., Yoza, B.K. & McCall, C.E. J. Biol. Chem. 287, 25758–25769 (2012).

    CAS  Article  Google Scholar 

  12. 12

    Yáñez, A. et al. Eur. J. Immunol. 43, 2114–2125 (2013).

    Article  Google Scholar 

  13. 13

    Sun, J.C., Beilke, J.N. & Lanier, L.L. Nature 457, 557–561 (2009).

    CAS  Article  Google Scholar 

  14. 14

    O'Leary, J.G., Goodarzi, M., Drayton, D.L. & von Andrian, U.H. Nat. Immunol. 7, 507–516 (2006).

    CAS  Article  Google Scholar 

  15. 15

    Schlums, H. et al. Immunity 42, 443–456 (2015).

    CAS  Article  Google Scholar 

  16. 16

    Lee, J. et al. Immunity 42, 431–442 (2015).

    CAS  Article  Google Scholar 

  17. 17

    Artis, D. & Spits, H. Nature 517, 293–301 (2015).

    CAS  Article  Google Scholar 

  18. 18

    Eskandarian, H.A. et al. Science 341, 1238858 (2013).

    Article  Google Scholar 

  19. 19

    Bierne, H., Hamon, M. & Cossart, P. Cold Spring Harb. Perspect. Med. 2, a010272 (2012).

    Article  Google Scholar 

  20. 20

    Chen, F. et al. Nat. Immunol. 15, 938–946 (2014).

    CAS  Article  Google Scholar 

  21. 21

    De Nardo, D. et al. Nat. Immunol. 15, 152–160 (2014).

    CAS  Article  Google Scholar 

  22. 22

    Schaafsma, W. et al. Brain Behav. Immun. 10.1016/j.bbi.2015.03.013 (2 April 2015).

  23. 23

    Benn, C.S., Netea, M.G., Selin, L.K. & Aaby, P. Trends Immunol. 34, 431–439 (2013).

    CAS  Article  Google Scholar 

  24. 24

    Jensen, K.J. et al. J. Infect. Dis. 211, 956–967 (2015).

    CAS  Article  Google Scholar 

  25. 25

    Nakaya, H.I. et al. Nat. Immunol. 12, 786–795 (2011).

    CAS  Article  Google Scholar 

  26. 26

    Buffen, K. et al. PLoS Pathog. 10, e1004485 (2014).

    Article  Google Scholar 

  27. 27

    Luna, E. & Ton, J. Plant Signal. Behav. 7, 615–618 (2012).

    CAS  Article  Google Scholar 

  28. 28

    Rando, O.J. Cell 151, 702–708 (2012).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mihai G Netea.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Netea, M., Latz, E., Mills, K. et al. Innate immune memory: a paradigm shift in understanding host defense. Nat Immunol 16, 675–679 (2015). https://doi.org/10.1038/ni.3178

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing