Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A vision and a prescription for big data–enabled medicine

Subjects

Genetic, environmental and socioeconomic factors render humanity remarkably diverse. '-Omic' and sensor technologies permit the capture of this diversity with unprecedented precision. Leveraging these technologies in clinical decision making will help to bring about the long-heralded personalization of medicine.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Capturing individual variation with the help of mobile-sensor and molecular-profiling technologies in the era of big data–enabled medicine.
Figure 2: Windows of opportunity afforded by high-resolution proximity testing.

References

  1. 1

    Medawar, P. in The Reith Lectures (BBC Radio 4, 1959).

    Google Scholar 

  2. 2

    Pulendran, B. Proc. Natl. Acad. Sci. USA 111, 12300–12306 (2014).

    CAS  Article  Google Scholar 

  3. 3

    Chatterjee, B. & Pancholi, J. Ayu 32, 141–146 (2011).

    Article  Google Scholar 

  4. 4

    Bennett, L. et al. J. Exp. Med. 197, 711–723 (2003).

    CAS  Article  Google Scholar 

  5. 5

    Griffiths, M.J. et al. J. Infect. Dis. 191, 1599–1611 (2005).

    CAS  Article  Google Scholar 

  6. 6

    Mejias, A. et al. PLoS Med. 10, e1001549 (2013).

    Article  Google Scholar 

  7. 7

    Moal, V. et al. J. Infect. Dis. 207, 125–132 (2013).

    CAS  Article  Google Scholar 

  8. 8

    Mostafavi, S. et al. Mol. Psychiatry 19, 1267–1274 (2014).

    CAS  Article  Google Scholar 

  9. 9

    Smih, F. et al. PLoS ONE 6, e20414 (2011).

    CAS  Article  Google Scholar 

  10. 10

    Stamova, B. et al. Stroke 41, 2171–2177 (2010).

    Article  Google Scholar 

  11. 11

    Li, S. et al. Nat. Immunol. 15, 195–204 (2014).

    Article  Google Scholar 

  12. 12

    Obermoser, G. et al. Immunity 38, 831–844 (2013).

    CAS  Article  Google Scholar 

  13. 13

    Gaucher, D. et al. J. Exp. Med. 205, 3119–3131 (2008).

    CAS  Article  Google Scholar 

  14. 14

    Querec, T.D. et al. Nat. Immunol. 10, 116–125 (2009).

    CAS  Article  Google Scholar 

  15. 15

    Oswald, M. et al. Arthritis Rheumatol. 67, 344–351 (2014).

    Article  Google Scholar 

  16. 16

    Hecker, M. et al. Mol. Neurobiol. 48, 737–756 (2013).

    CAS  Article  Google Scholar 

  17. 17

    Novershtern, N. et al. Cell 144, 296–309 (2011).

    CAS  Article  Google Scholar 

  18. 18

    Pascual, V. et al. Immunol. Rev. 223, 39–59 (2008).

    CAS  Article  Google Scholar 

  19. 19

    Panelli, M.C. et al. Genome Biol. 3, research0035.1–research0035.17 (2002).

    Article  Google Scholar 

  20. 20

    Berry, M.P. et al. Nature 466, 973–977 (2010).

    CAS  Article  Google Scholar 

  21. 21

    Martínez-Llordella, M. et al. J. Clin. Invest. 118, 2845–2857 (2008).

    PubMed  PubMed Central  Google Scholar 

  22. 22

    Newell, K.A. et al. J. Clin. Invest. 120, 1836–1847 (2010).

    CAS  Article  Google Scholar 

  23. 23

    Chiche, L. et al. Arthritis Rheumatol. 66, 1583–1595 (2014).

    CAS  Article  Google Scholar 

  24. 24

    Brenner, S. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 207–212 (2010).

    Article  Google Scholar 

  25. 25

    Ertin, E. et al. in Proc. 9th Int. Conf. Embedded Networked Sensor Systems (SenSys) (ACM, 2011).

    Google Scholar 

  26. 26

    Rahman, T. et al. in Proc. Int. Conf. Mobile Systems, Applications, Services (MobiSys) (ACM, 2014).

    Google Scholar 

  27. 27

    Nikzad, N. et al. in Proc. Conf. Wireless Health (WH '12) (ACM, 2012).

    Google Scholar 

  28. 28

    Chaussabel, D. & Baldwin, N. Nat. Rev. Immunol. 14, 271–280 (2014).

    CAS  Article  Google Scholar 

  29. 29

    Kaizer, E.C. et al. J. Clin. Endocrinol. Metab. 92, 3705–3711 (2007).

    CAS  Article  Google Scholar 

  30. 30

    Woods, C.W. et al. PLoS ONE 8, e52198 (2013).

    CAS  Article  Google Scholar 

  31. 31

    Lukaszewski, R.A. et al. Clin. Vaccine Immunol. 15, 1089–1094 (2008).

    CAS  Article  Google Scholar 

  32. 32

    Kallionpää, H. et al. Diabetes 63, 2402–2414 (2014).

    Article  Google Scholar 

  33. 33

    Ockenhouse, C.F. et al. Infect. Immun. 74, 5561–5573 (2006).

    CAS  Article  Google Scholar 

  34. 34

    Quick, J., Quinlan, A.R. & Loman, N.J. Gigascience 3, 22 (2014).

    Article  Google Scholar 

  35. 35

    Chaussabel, D. et al. Immunity 29, 150–164 (2008).

    CAS  Article  Google Scholar 

  36. 36

    Nakaya, H.I. et al. Nat. Immunol. 12, 786–795 (2011).

    CAS  Article  Google Scholar 

  37. 37

    Oh, J.Z. et al. Immunity 41, 478–492 (2014).

    CAS  Article  Google Scholar 

  38. 38

    Ravindran, R. et al. Science 343, 313–317 (2014).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Damien Chaussabel or Bali Pulendran.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chaussabel, D., Pulendran, B. A vision and a prescription for big data–enabled medicine. Nat Immunol 16, 435–439 (2015). https://doi.org/10.1038/ni.3151

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing