Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Innate immunity in Alzheimer's disease

Abstract

Alzheimer's disease (AD) is the world's most common dementing illness, affecting over 150 million patients. Classically AD has been viewed as a neurodegenerative disease of the elderly, characterized by the extracellular deposition of misfolded amyloid-β (Aβ) peptide and the intracellular formation of neurofibrillary tangles. Only recently has neuroinflammation emerged as an important component of AD pathology. Experimental, genetic and epidemiological data now indicate a crucial role for activation of the innate immune system as a disease-promoting factor. The sustained formation and deposition of Aβ aggregates causes chronic activation of the immune system and disturbance of microglial clearance functions. Here we review advances in the molecular understanding of the inflammatory response in AD that point to novel therapeutic approaches for the treatment of this devastating disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Clearance of Aβ.

Marina Corral Spence/Nature Publishing Group

Figure 2: Several receptors on microglia contribute to cellular activation by the various forms of Aβ.
Figure 3: Inflammasomes and the production of active IL-1β.

Marina Corral Spence/Nature Publishing Group

Figure 4: External and internal influences on AD.

Marina Corral Spence/Nature Publishing Group

Similar content being viewed by others

References

  1. Jack, C.R. Jr. et al. Tracking pathophysiological processes in Alzheimer's disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 12, 207–216 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Querfurth, H.W. & LaFerla, F.M. Alzheimer's disease. N. Engl. J. Med. 362, 329–344 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Bertram, L., Lill, C.M. & Tanzi, R.E. The genetics of Alzheimer disease: back to the future. Neuron 68, 270–281 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Mawuenyega, K.G. et al. Decreased clearance of CNS β-amyloid in Alzheimer's disease. Science 330, 1774–1774 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Walsh, D.M. et al. Naturally secreted oligomers of amyloid b protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416, 535–539 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Hammer, N.D., Schmidt, J.C. & Chapman, M.R. The curli nucleator protein, CsgB, contains an amyloidogenic domain that directs CsgA polymerization. Proc. Natl. Acad. Sci. USA 104, 12494–12499 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chapman, M.R. et al. Role of Escherichia coli curli operons in directing amyloid fiber formation. Science 295, 851–855 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Epstein, E.A. & Chapman, M.R. Polymerizing the fibre between bacteria and host cells: the biogenesis of functional amyloid fibres. Cell. Microbiol. 10, 1413–1420 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Monje, M.L., Toda, H. & Palmer, T.D. Inflammatory blockade restores adult hippocampal neurogenesis. Science 302, 1760–1765 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Weggen, S. et al. A subset of NSAIDs lower amyloidogenic Aβ42 independently of cyclooxygenase activity. Nature 414, 212–216 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Sastre, M. et al. Nonsteroidal anti-inflammatory drugs and peroxisome proliferator-activated receptor-gamma agonists modulate immunostimulated processing of amyloid precursor protein through regulation of β-secretase. J. Neurosci. 23, 9796–9804 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. In t' Veld, B.A. et al. Nonsteroidal antiinflammatory drugs and the risk of Alzheimer's disease. N. Engl. J. Med. 345, 1515–1521 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Breitner, J.C. The role of anti-inflammatory drugs in the prevention and treatment of Alzheimer's disease. Annu. Rev. Med. 47, 401–411 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Cagnin, A. et al. In-vivo measurement of activated microglia in dementia. Lancet 358, 461–467 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Yasuno, F. et al. Increased binding of peripheral benzodiazepine receptor in mild cognitive impairment-dementia converters measured by positron emission tomography with [11C]DAA1106. Psychiatry Res. 203, 67–74 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Lambert, J.-C. et al. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease. Nat. Genet. 41, 1094–1099 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Karch, C.M., Cruchaga, C. & Goate, A.M. Alzheimer's disease genetics: from the bench to the clinic. Neuron 83, 11–26 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu, S. et al. TLR2 is a primary receptor for Alzheimer's amyloid b peptide to trigger neuroinflammatory activation. J. Immunol. 188, 1098–1107 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Stewart, C.R. et al. CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat. Immunol. 11, 155–161 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Lim, J.-E. et al. MyD88 deficiency ameliorates β-amyloidosis in an animal model of Alzheimer's disease. Am. J. Pathol. 179, 1095–1103 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lim, J.-E. et al. The effects of MyD88 deficiency on exploratory activity, anxiety, motor coordination, and spatial learning in C57BL/6 and APPswe/PS1dE9 mice. Behav. Brain Res. 227, 36–42 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Reed-Geaghan, E.G., Savage, J.C., Hise, A.G. & Landreth, G.E. CD14 and toll-like receptors 2 and 4 are required for fibrillar Aβ-stimulated microglial activation. J. Neurosci. 29, 11982–11992 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Maezawa, I., Zimin, P.I., Wulff, H. & Jin, L.-W. Amyloid-b protein oligomer at low nanomolar concentrations activates microglia and induces microglial neurotoxicity. J. Biol. Chem. 286, 3693–3706 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Wright, A.L. et al. Neuroinflammation and neuronal loss precede Aβ plaque deposition in the hAPP-J20 mouse model of Alzheimer's disease. PLoS ONE 8, e59586 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Heneka, M.T. et al. Focal glial activation coincides with increased BACE1 activation and precedes amyloid plaque deposition in APP[V717I] transgenic mice. J. Neuroinflammation 2, 22 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sojkova, J. & Resnick, S.M. In vivo human amyloid imaging. Curr. Alzheimer Res. 8, 366–372 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Davalos, D. et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci. 8, 752–758 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. El Khoury, J. et al. Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nat. Med. 13, 432–438 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Cribbs, D.H. et al. Extensive innate immune gene activation accompanies brain aging, increasing vulnerability to cognitive decline and neurodegeneration: a microarray study. J. Neuroinflammation 9, 179 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Latz, E., Xiao, T.S. & Stutz, A. Activation and regulation of the inflammasomes. Nat. Rev. Immunol. 13, 397–411 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Halle, A. et al. The NALP3 inflammasome is involved in the innate immune response to amyloid-β. Nat. Immunol. 9, 857–865 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tong, L. et al. Brain-derived neurotrophic factor-dependent synaptic plasticity is suppressed by interleukin-1β via p38 mitogen-activated protein kinase. J. Neurosci. 32, 17714–17724 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Youm, Y.-H. et al. Canonical Nlrp3 inflammasome links systemic low-grade inflammation to functional decline in aging. Cell Metab. 18, 519–532 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Heneka, M.T. et al. NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice. Nature 493, 674–678 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Cameron, B. et al. Loss of interleukin receptor-associated kinase 4 signaling suppresses amyloid pathology and alters microglial phenotype in a mouse model of Alzheimer's disease. J. Neurosci. 32, 15112–15123 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vom Berg, J. et al. Inhibition of IL-12/IL-23 signaling reduces Alzheimer's disease-like pathology and cognitive decline. Nat. Med. 18, 1812–1819 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Terwel, D. et al. Critical role of astroglial apolipoprotein E and liver X receptor-a expression for microglial Aβ phagocytosis. J. Neurosci. 31, 7049–7059 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vodovotz, Y. et al. Inducible nitric oxide synthase in tangle-bearing neurons of patients with Alzheimer's disease. J. Exp. Med. 184, 1425–1433 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Hoshino, T. et al. Suppression of Alzheimer's disease-related phenotypes by expression of heat shock protein 70 in mice. J. Neurosci. 31, 5225–5234 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Paolicelli, R.C. et al. Synaptic pruning by microglia is necessary for normal brain development. Science 333, 1456–1458 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Yirmiya, R. & Goshen, I. Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behav. Immun. 25, 181–213 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Lynch, M.A. Neuroinflammatory changes negatively impact on LTP: A focus on IL-1β. Brain Res. doi:10.1016/j.brainres.2014.08.040 (2014).

  43. Pickering, M., Cumiskey, D. & O'Connor, J.J. Actions of TNF-a on glutamatergic synaptic transmission in the central nervous system. Exp. Physiol. 90, 663–670 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Cumiskey, D., Pickering, M. & O'Connor, J.J. Interleukin-18 mediated inhibition of LTP in the rat dentate gyrus is attenuated in the presence of mGluR antagonists. Neurosci. Lett. 412, 206–210 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Wang, Q., Rowan, M.J. & Anwyl, R. β-amyloid-mediated inhibition of NMDA receptor-dependent long-term potentiation induction involves activation of microglia and stimulation of inducible nitric oxide synthase and superoxide. J. Neurosci. 24, 6049–6056 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bachstetter, A.D. et al. Early stage drug treatment that normalizes proinflammatory cytokine production attenuates synaptic dysfunction in a mouse model that exhibits age-dependent progression of Alzheimer's disease-related pathology. J. Neurosci. 32, 10201–10210 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lee, M. et al. Acidic fibroblast growth factor (FGF) potentiates glial-mediated neurotoxicity by activating FGFR2 IIIb protein. J. Biol. Chem. 286, 41230–41245 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cho, S.-H. et al. CX3CR1 protein signaling modulates microglial activation and protects against plaque-independent cognitive deficits in a mouse model of Alzheimer disease. J. Biol. Chem. 286, 32713–32722 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Neniskyte, U., Neher, J.J. & Brown, G.C. Neuronal death induced by nanomolar amyloid b is mediated by primary phagocytosis of neurons by microglia. J. Biol. Chem. 286, 39904–39913 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kitazawa, M., Oddo, S., Yamasaki, T.R., Green, K.N. & LaFerla, F.M. Lipopolysaccharide-induced inflammation exacerbates tau pathology by a cyclin-dependent kinase 5-mediated pathway in a transgenic model of Alzheimer's disease. J. Neurosci. 25, 8843–8853 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lee, C.Y. & Landreth, G.E. The role of microglia in amyloid clearance from the AD brain. J. Neural Transm. 117, 949–960 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Bhaskar, K. et al. Regulation of tau pathology by the microglial fractalkine receptor. Neuron 68, 19–31 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sy, M. et al. Inflammation induced by infection potentiates tau pathological features in transgenic mice. Am. J. Pathol. 178, 2811–2822 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yoshiyama, Y. et al. Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 53, 337–351 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Gorlovoy, P., Larionov, S., Pham, T.T.H. & Neumann, H. Accumulation of tau induced in neurites by microglial proinflammatory mediators. FASEB J. 23, 2502–2513 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Ghosh, S. et al. Sustained interleukin-1β overexpression exacerbates tau pathology despite reduced amyloid burden in an Alzheimer's mouse model. J. Neurosci. 33, 5053–5064 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Heneka, M.T. et al. Locus ceruleus controls Alzheimer's disease pathology by modulating microglial functions through norepinephrine. Proc. Natl. Acad. Sci. USA 107, 6058–6063 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kummer, M.P. et al. Mrp14 deficiency ameliorates amyloid b burden by increasing microglial phagocytosis and modulation of amyloid precursor protein processing. J. Neurosci. 32, 17824–17829 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Grommes, C. et al. Regulation of microglial phagocytosis and inflammatory gene expression by Gas6 acting on the Axl/Mer family of tyrosine kinases. J. Neuroimmune Pharmacol. 3, 130–140 (2008).

    Article  PubMed  Google Scholar 

  60. Zhu, Y. et al. CD45 deficiency drives amyloid-β peptide oligomers and neuronal loss in Alzheimer's disease mice. J. Neurosci. 31, 1355–1365 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yuyama, K., Sun, H., Mitsutake, S. & Igarashi, Y. Sphingolipid-modulated exosome secretion promotes clearance of amyloid-β by microglia. J. Biol. Chem. 287, 10977–10989 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hollingworth, P. et al. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease. Nat. Genet. 43, 429–435 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Liang, Y. & Tedder, T.F. Identification of a CD20-, FceRIβ-, and HTm4-related gene family: sixteen new MS4A family members expressed in human and mouse. Genomics 72, 119–127 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Lajaunias, F., Dayer, J.-M. & Chizzolini, C. Constitutive repressor activity of CD33 on human monocytes requires sialic acid recognition and phosphoinositide 3-kinase-mediated intracellular signaling. Eur. J. Immunol. 35, 243–251 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Bradshaw, E.M. et al. CD33 Alzheimer's disease locus: altered monocyte function and amyloid biology. Nat. Neurosci. 16, 848–850 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Griciuc, A. et al. Alzheimer's disease risk gene CD33 inhibits microglial uptake of amyloid b. Neuron 78, 631–643 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Melchior, B. et al. Dual induction of TREM2 and tolerance-related transcript, Tmem176b, in amyloid transgenic mice: implications for vaccine-based therapies for Alzheimer's disease. ASN Neuro 2, e00037 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Frank, S. et al. TREM2 is upregulated in amyloid plaque-associated microglia in aged APP23 transgenic mice. Glia 56, 1438–1447 (2008).

    Article  PubMed  Google Scholar 

  69. Hamerman, J.A. et al. Cutting edge: inhibition of TLR and FcR responses in macrophages by triggering receptor expressed on myeloid cells (TREM)-2 and DAP12. J. Immunol. 177, 2051–2055 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Bouchon, A., Hernández-Munain, C., Cella, M. & Colonna, M.A. DAP12-mediated pathway regulates expression of CC chemokine receptor 7 and maturation of human dendritic cells. J. Exp. Med. 194, 1111–1122 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Takata, K. et al. Galantamine-induced amyloid-β clearance mediated via stimulation of microglial nicotinic acetylcholine receptors. J. Biol. Chem. 285, 40180–40191 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mandrekar-Colucci, S., Karlo, J.C. & Landreth, G.E. Mechanisms underlying the rapid peroxisome proliferator-activated receptor-g-mediated amyloid clearance and reversal of cognitive deficits in a murine model of Alzheimer's disease. J. Neurosci. 32, 10117–10128 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yamanaka, M. et al. PPARg/RXRa-induced and CD36-mediated microglial amyloid-β phagocytosis results in cognitive improvement in amyloid precursor protein/presenilin 1 mice. J. Neurosci. 32, 17321–17331 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Adolfsson, R., Gottfries, C.G., Roos, B.E. & Winblad, B. Changes in the brain catecholamines in patients with dementia of Alzheimer type. Br. J. Psychiatry 135, 216–223 (1979).

    Article  CAS  PubMed  Google Scholar 

  75. Leissring, M.A. et al. Enhanced proteolysis of β-amyloid in APP transgenic mice prevents plaque formation, secondary pathology, and premature death. Neuron 40, 1087–1093 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Tamboli, I.Y. et al. Statins promote the degradation of extracellular amyloid β-peptide by microglia via stimulation of exosome-associated insulin-degrading enzyme (IDE) secretion. J. Biol. Chem. 285, 37405–37414 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kumar, S. et al. Phosphorylation of amyloid-β peptide at serine 8 attenuates its clearance via insulin-degrading and angiotensin-converting enzymes. J. Biol. Chem. 287, 8641–8651 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sheng, J.G. et al. Lipopolysaccharide-induced-neuroinflammation increases intracellular accumulation of amyloid precursor protein and amyloid b peptide in APPswe transgenic mice. Neurobiol. Dis. 14, 133–145 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Weberpals, M. et al. NOS2 gene deficiency protects from sepsis-induced long-term cognitive deficits. J. Neurosci. 29, 14177–14184 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lemstra, A.W. et al. Microglia activation in sepsis: a case-control study. J. Neuroinflammation 4, 4 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Holmes, C. et al. Systemic inflammation and disease progression in Alzheimer disease. Neurology 73, 768–774 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Iwashyna, T.J., Ely, E.W., Smith, D.M. & Langa, K.M. Long-term cognitive impairment and functional disability among survivors of severe sepsis. J. Am. Med. Assoc. 304, 1787–1794 (2010).

    Article  CAS  Google Scholar 

  83. Semmler, A. et al. Persistent cognitive impairment, hippocampal atrophy and EEG changes in sepsis survivors. J. Neurol. Neurosurg. Psychiatry 84, 62–69 (2013).

    Article  PubMed  Google Scholar 

  84. Kamer, A.R. et al. TNF-a and antibodies to periodontal bacteria discriminate between Alzheimer's disease patients and normal subjects. J. Neuroimmunol. 216, 92–97 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kamer, A.R. et al. Inflammation and Alzheimer's disease: possible role of periodontal diseases. Alzheimers Dement. 4, 242–250 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Lumeng, C.N., Bodzin, J.L. & Saltiel, A.R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest. 117, 175–184 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Uryu, K. et al. Repetitive mild brain trauma accelerates Aβ deposition, lipid peroxidation, and cognitive impairment in a transgenic mouse model of Alzheimer amyloidosis. J. Neurosci. 22, 446–454 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Stalder, M. et al. Association of microglia with amyloid plaques in brains of APP23 transgenic mice. Am. J. Pathol. 154, 1673–1684 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Simard, A.R., Soulet, D., Gowing, G., Julien, J.-P. & Rivest, S. Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer's disease. Neuron 49, 489–502 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by the Deutsche Forschungsgemeinschaft (Excellence Cluster ImmunoSensation and KFO177 to E.L. and M.T.H.) and by the US National Institutes of Health (1R01HL112661 to E.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael T Heneka.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heneka, M., Golenbock, D. & Latz, E. Innate immunity in Alzheimer's disease. Nat Immunol 16, 229–236 (2015). https://doi.org/10.1038/ni.3102

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.3102

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing