Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

Transcriptional programs define molecular characteristics of innate lymphoid cell classes and subsets

Abstract

The recognized diversity of innate lymphoid cells (ILCs) is rapidly expanding. Three ILC classes have emerged, ILC1, ILC2 and ILC3, with ILC1 and ILC3 including several subsets. The classification of some subsets is unclear, and it remains controversial whether natural killer (NK) cells and ILC1 cells are distinct cell types. To address these issues, we analyzed gene expression in ILCs and NK cells from mouse small intestine, spleen and liver, as part of the Immunological Genome Project. The results showed unique gene-expression patterns for some ILCs and overlapping patterns for ILC1 cells and NK cells, whereas other ILC subsets remained indistinguishable. We identified a transcriptional program shared by small intestine ILCs and a core ILC signature. We revealed and discuss transcripts that suggest previously unknown functions and developmental paths for ILCs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Analysis of ILC frequency and diversity.
Figure 2: Characteristic transcripts of individual ILC subsets.
Figure 3: Spectrum of distinct and shared transcriptional profiles among ILC subsets.
Figure 4: ILC3-specific transcriptional programs and cell-surface markers.
Figure 5: Transcripts expressed differently by NK cells versus ILC1 cells.
Figure 6: Generation of a core ILC signature distinct from that of NK cells.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Referenced accessions

Gene Expression Omnibus

References

  1. Heng, T.S. & Painter, M.W. The Immunological Genome Project: networks of gene expression in immune cells. Nat. Immunol. 9, 1091–1094 (2008).

    CAS  PubMed  Google Scholar 

  2. Diefenbach, A., Colonna, M. & Koyasu, S. Development, differentiation, and diversity of innate lymphoid cells. Immunity 41, 354–365 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. McKenzie, A.N., Spits, H. & Eberl, G. Innate lymphoid cells in inflammation and immunity. Immunity 41, 366–374 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Klose, C.S. et al. Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell 157, 340–356 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Sawa, S. et al. Lineage relationship analysis of RORgammat+ innate lymphoid cells. Science 330, 665–669 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Lee, J.S. et al. AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch. Nat. Immunol. 13, 144–151 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Klose, C.S. et al. A T-bet gradient controls the fate and function of CCR6-Rorγt+ innate lymphoid cells. Nature 494, 262–265 (2013).

    Article  CAS  Google Scholar 

  8. Sciumé, G. et al. Distinct requirements for T-bet in gut innate lymphoid cells. J. Exp. Med. 209, 2331–2338 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rankin, L.C. et al. The transcription factor T-bet is essential for the development of NKp46+ innate lymphocytes via the Notch pathway. Nat. Immunol. 14, 389–395 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Buonocore, S. et al. Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature 464, 1371–1375 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Constantinides, M.G., McDonald, B.D., Verhoef, P.A. & Bendelac, A. A committed precursor to innate lymphoid cells. Nature 508, 397–401 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yu, J., Freud, A.G. & Caligiuri, M.A. Location and cellular stages of natural killer cell development. Trends Immunol. 34, 573–582 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Gordon, S.M. et al. The transcription factors T-bet and Eomes control key checkpoints of natural killer cell maturation. Immunity 36, 55–67 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Reynders, A. et al. Identity, regulation and in vivo function of gut NKp46+RORγt+ and NKp46+RORγt– lymphoid cells. EMBO J. 30, 2934–2947 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gasteiger, G., Hemmers, S., Bos, B.D., Sun, J.C. & Rudensky, A.Y. IL-2-dependent adaptive control of NK cell homeostasis. J. Exp. Med. 210, 1179–1187 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fuchs, A. et al. Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFN-γ-producing cells. Immunity 38, 769–781 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Turner, J.E. et al. IL-9-mediated survival of type 2 innate lymphoid cells promotes damage control in helminth-induced lung inflammation. J. Exp. Med. 210, 2951–2965 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mjösberg, J. et al. The transcription factor GATA3 is essential for the function of human type 2 innate lymphoid cells. Immunity 37, 649–659 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Yagi, R. et al. The transcription factor GATA3 is critical for the development of all IL-7Rα-expressing innate lymphoid cells. Immunity 40, 378–388 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Evans, R.M. & Mangelsdorf, D.J. Nuclear receptors, RXR, and the Big Bang. Cell 157, 255–266 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Spencer, S.P. et al. Adaptation of innate lymphoid cells to a micronutrient deficiency promotes type 2 barrier immunity. Science 343, 432–437 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Molofsky, A.B. et al. Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages. J. Exp. Med. 210, 535–549 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mohebiany, A.N., Harroch, S. & Bouyain, S. in Cell Adhesion Molecules: Implications in Neurological Diseases, Advances in Neurobiology Vol. 8 (eds. Berezin, V. & Walmod, P.S.) Chapter 8 (Springer Science+Business Media, 2014).

  24. Cella, M. et al. A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature 457, 722–725 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Mortha, A. et al. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal tolerance. Science 343, 1249288 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Levitt, L.J. et al. Production of granulocyte/macrophage-colony stimulating factor by human natural killer cells. Modulation by the p75 subunit of the interleukin 2 and by the CD2 receptor. J. Clin. Invest. 88, 67–75 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. van de Pavert, S.A. et al. Maternal retinoids control type 3 innate lymphoid cells and set the offspring immunity. Nature 508, 123–127 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kiss, E.A. et al. Natural aryl hydrocarbon receptor ligands control organogenesis of intestinal lymphoid follicles. Science 334, 1561–1565 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Gascoyne, D.M. et al. The basic leucine zipper transcription factor E4BP4 is essential for natural killer cell development. Nat. Immunol. 10, 1118–1124 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Kamizono, S. et al. Nfil3/E4bp4 is required for the development and maturation of NK cells in vivo. J. Exp. Med. 206, 2977–2986 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Seillet, C. et al. Nfil3 is required for the development of all innate lymphoid cell subsets. J. Exp. Med. 211, 1733–1740 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Geiger, T.L. et al. Nfil3 is crucial for development of innate lymphoid cells and host protection against intestinal pathogens. J. Exp. Med. 211, 1723–1731 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Muller, P.A. et al. Crosstalk between muscularis macrophages and enteric neurons regulates gastrointestinal motility. Cell 158, 300–313 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bando, J.K., Liang, H.E. & Locksley, R.M. Identification and distribution of developing innate lymphoid cells in the fetal mouse intestine. Nat. Immunol. http://www.nature.com/ni/journal/vaop/ncurrent/full/ni.3057.html (2014).

  35. Veiga-Fernandes, H. et al. Tyrosine receptor RET is a key regulator of Peyer's patch organogenesis. Nature 446, 547–551 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Ramirez, K. et al. Gene deregulation and chronic activation in natural killer cells deficient in the transcription factor ETS1. Immunity 36, 921–932 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Carpenter, S., Ricci, E.P., Mercier, B.C., Moore, M.J. & Fitzgerald, K.A. Post-transcriptional regulation of gene expression in innate immunity. Nat. Rev. Immunol. 14, 361–376 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Kumanogoh, A. & Kikutani, H. Immunological functions of the neuropillins and plexins as receptors for semaphorins. Nat. Rev. Immunol. 13, 802–814 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Yadav, M. et al. Neuropilin-1 distinguishes natural and inducible regulatory T cells among regulatory T cell subsets in vivo. J. Exp. Med. 209, 1713–1722 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Weiss, J.M. et al. Neuropilin 1 is expressed on thymus-derived natural regulatory T cells, but not mucosa-generated induced Foxp3+ T reg cells. J. Exp. Med. 209, 1723–1742 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shen, W. et al. Adaptive immunity to murine skin commensals. Proc. Natl. Acad. Sci. USA 111, E2977–E2986 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Daussy, C. et al. T-bet and Eomes instruct the development of two distinct natural killer cell lineages in the liver and in the bone marrow. J. Exp. Med. 211, 563–577 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sojka, D.K. et al. Tissue-resident natural killer (NK) cells are cell lineages distinct from thymic and conventional splenic NK cells. Elife 3, e01659 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ye, S.K. et al. Induction of germline transcription in the Tcrγ locus by Stat5: implications for accessibility control by the IL-7 receptor. Immunity 11, 213–223 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Zhao, H., Nguyen, H. & Kang, J. Interleukin 15 controls the generation of restricted T cell receptor repertoire of intraepithelial lymphocytes. Nat. Immunol. 6, 1263–1271 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Allan, D.S. et al. An in vitro model of innate lymphoid cell function and differentiation. Mucosal Immunol. http://www.nature.com/mi/journal/vaop/ncurrent/full/mi201471a.html (2014).

  47. Yu, X. et al. The basic leucine zipper transcription factor NFIL3 directs the development of a common innate lymphoid cell progenitor. Elife 10, e04406 (2014).

    Article  CAS  Google Scholar 

  48. Satoh-Takayama, N. et al. The chemokine receptor CXCR6 controls the functional topograophy of interluekin-22 producing intestinal innate lymphoid cells. Immunity 41, 776–788 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Bezman, N.A. et al. ImmGen report: molecular definition of natural killer cell identity and activation. Nat. Immunol. 13, 1000–1009 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Peng, H. et al. Liver-resident NK cells confer adaptive immunity in skin-contact inflammation. J. Clin. Invest. 123, 1444–1456 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Reich, M. et al. GenePattern 2.0. Nat. Genet. 38, 500–501 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank our colleagues in the ImmGen consortium, especially C. Benoist and L. Lanier, for input and discussion; the core ImmGen team, K. Rothamel and A. Rhodes, for contributions and technical assistance; M. Artyomov, G. Krishnan and J. Siegel for computational assistance; D. Sojka for discussion; E. Lantelme and D. Brinja for sorting assistance; P. Wang for microscopy assistance; and eBioscience and Affymetrix for support of the ImmGen Project. Supported by the US National Institutes of Health (R24AI072073 to the ImmGen Consortium; 1U01AI095542, R01DE021255 and R21CA16719 to the Colonna laboratory; MSTP T32 GM07200 to M.L.R.; and Infectious Disease Training Grant T32 AI 7172-34 to V.S.C.).

Author information

Authors and Affiliations

Authors

Consortia

Contributions

M.L.R. analyzed data; A.F., M.L.R., J.S.L. and Y.W. sorted cell subsets; M.L.R., A.F. and V.S.C. performed follow-up experiments and analyzed data; S.G. maintained mice; S.K.D. provided critical reagents; M.L.R., A.F., S.G. and M.C. designed studies; M.L.R. and M.C. wrote the paper; and the ImmGen Consortium contributed to the experimental design and data collection.

Corresponding author

Correspondence to Marco Colonna.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Characteristics of sorted ILC and NK cell populations.

(a) Gating strategy for siLP ILC1, NK, NKp46+ ILC3, and NKp46 LTi-like ILC3 subsets after gating on live CD45+ and CD3CD19 cells in C57BL/6 mice or RorγteGFP/+ reporter mice. ILCs are gated on intracellularly stained Rorγt+ cells (left) or RorγteGFP+ cells (right). For microarray analysis, the gating strategy as shown on the right was used. (b,c) Histograms of NK1.1 (b) and CD45 (c) expression from sorted siLP subsets used in array generation (n = 5 pooled mice each). (d) Two-dimensional views of PCA. Data are representative of at least ten experiments (a) or five independent experiments (b,c).

Supplementary Figure 2 Validation of ILC core signature.

(a) Extracellular and intracellular staining of TCRδ on (or in) ILCs and NK cells, continued from Figure 6. Numbers in outlined areas indicate percent TCRδ+ cells (outline colors (red) match those in keys above plots). (b) Representative flow plots of percentage of CXCR6+ cells from CXCR6eGFP/+ reporter mice. siLP NKp46 LTi-like ILC3, siLP ILC1, siLP NK, and siLP NKp46+ ILC3 percentages were analyzed after fixation of cells. Color-coded gates demonstrate percentage of indicated subsets that are CXCR6+ (n = three or four mice per genotype per tissue). Data are representative of two independent experiments (a) or three independent experiments (b).

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2 (PDF 1153 kb)

Supplementary Table 1

Unique transcripts of individual ILC subsets (XLSX 50 kb)

Supplementary Table 2

Shared transcripts between siILC subsets (XLSX 73 kb)

Supplementary Table 3

Transcripts differentially expressed among ILC3 subsets (XLSX 60 kb)

Supplementary Table 4

Transcripts differentially expressed between NK cells and ILC1 cells in a single tissue (XLSX 84 kb)

Supplementary Table 5

Transcripts differentially expressed between NK cells and ILC1 cells in two tissues (XLSX 48 kb)

Supplementary Table 6

Core ILC1 and NK cell signatures (XLSX 54 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robinette, M., Fuchs, A., Cortez, V. et al. Transcriptional programs define molecular characteristics of innate lymphoid cell classes and subsets. Nat Immunol 16, 306–317 (2015). https://doi.org/10.1038/ni.3094

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.3094

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing