Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The immunology of asthma

Abstract

Asthma is a common disease that affects 300 million people worldwide. Given the large number of eosinophils in the airways of people with mild asthma, and verified by data from murine models, asthma was long considered the hallmark T helper type 2 (TH2) disease of the airways. It is now known that some asthmatic inflammation is neutrophilic, controlled by the TH17 subset of helper T cells, and that some eosinophilic inflammation is controlled by type 2 innate lymphoid cells (ILC2 cells) acting together with basophils. Here we discuss results from in-depth molecular studies of mouse models in light of the results from the first clinical trials targeting key cytokines in humans and describe the extraordinary heterogeneity of asthma.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Overview of functions of TH2 cells and ILC2 cells in asthma.
Figure 2: Relative roles of TH2 cells and ILC2 cells in two forms of eosinophilic asthma.
Figure 3: Epithelial cell–DC interactions during the sensitization and challenge phase of experimental asthma.
Figure 4: Defective antiviral immunity in asthma.

References

  1. Simpson, A. et al. Beyond atopy: multiple patterns of sensitization in relation to asthma in a birth cohort study. Am. J. Respir. Crit. Care Med. 181, 1200–1206 (2010).

    PubMed  Google Scholar 

  2. Spergel, J.M. & Paller, A.S. Atopic dermatitis and the atopic march. J. Allergy Clin. Immunol. 112 (suppl.), S118–S127 (2003).

    PubMed  Google Scholar 

  3. Anderson, G.P. Endotyping asthma: new insights into key pathogenic mechanisms in a complex, heterogeneous disease. Lancet 372, 1107–1119 (2008).

    PubMed  Google Scholar 

  4. Woodruff, P.G. et al. T-helper type 2-driven inflammation defines major subphenotypes of asthma. Am. J. Respir. Crit. Care Med. 180, 388–395 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Wu, W. et al. Unsupervised phenotyping of Severe Asthma Research Program participants using expanded lung data. J. Allergy Clin. Immunol. 133, 1280–1288 (2014).

    PubMed  PubMed Central  Google Scholar 

  6. Wenzel, S.E. Asthma phenotypes: the evolution from clinical to molecular approaches. Nat. Med. 18, 716–725 (2012).

    CAS  PubMed  Google Scholar 

  7. Brusselle, G.G., Joos, G.F. & Bracke, K.R. New insights into the immunology of chronic obstructive pulmonary disease. Lancet 378, 1015–1026 (2011).

    CAS  PubMed  Google Scholar 

  8. De Monchy, J.G.R. et al. Bronchoalveolar eosinophilia during allergen-induced late asthmatic reactions. Am. Rev. Respir. Dis. 131, 373–376 (1985).

    CAS  PubMed  Google Scholar 

  9. Humbert, M., Durham, S.R. & Ying, S. IL-4 and IL-5 mRNA and protein in bronchial biopsies from patients with atopic and non-atopic asthma: evidence against “intrinsic” asthma being a distinct immunopathologic entity. Am. J. Respir. Crit. Care Med. 154, 1497–1504 (1996).

    CAS  PubMed  Google Scholar 

  10. Bentley, A.M. et al. Activated T-lymphocytes and eosinophils in the bronchial mucosa in isocyanate-induced asthma. J. Allergy Clin. Immunol. 89, 821–829 (1992).

    CAS  PubMed  Google Scholar 

  11. Bousquet, J. et al. Eosinophilic inflammation in asthma. N. Engl. J. Med. 323, 1033–1039 (1990).

    CAS  PubMed  Google Scholar 

  12. Robinson, D.S. et al. Predominant Th2-like bronchoalveolar T lymphocyte population in atopic asthma. N. Engl. J. Med. 326, 298–304 (1992).

    CAS  PubMed  Google Scholar 

  13. Woodruff, P.G. et al. Genome-wide profiling identifies epithelial cell genes associated with asthma and with treatment response to corticosteroids. Proc. Natl. Acad. Sci. USA 104, 15858–15863 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Cheng, D. et al. Epithelial interleukin-25 is a key mediator in TH2-high, corticosteroid-responsive asthma. Am. J. Respir. Crit. Care Med. 190, 639–648 (2014).

    PubMed  PubMed Central  Google Scholar 

  15. Cohn, L., Homer, R.J., Niu, N. & Bottomly, K. T helper 1 cells and interferon gamma regulate allergic airway inflammation and mucus production. J. Exp. Med. 190, 1309–1318 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Cohn, L. et al. TH2-induced airway mucus production is dependent on IL-4Rα, but not on eosinophils. J. Immunol. 162, 6178–6183 (1999).

    CAS  PubMed  Google Scholar 

  17. Cohn, L., Homer, R.J., Marinov, A., Rankin, J. & Bottomly, K. Induction of airway mucus production By T helper 2 (TH2) cells: a critical role for interleukin 4 in cell recruitment but not mucus production. J. Exp. Med. 186, 1737–1747 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Doherty, T.A., Soroosh, P., Broide, D.H. & Croft, M. CD4+ cells are required for chronic eosinophilic lung inflammation but not airway remodeling. Am. J. Physiol. Lung Cell. Mol. Physiol. 296, L229–L235 (2009).

    CAS  PubMed  Google Scholar 

  19. Gavett, S.H. et al. Interleukin 12 inhibits antigen-induced airway hyperresponsiveness, inflammation, and TH2 cytokine expression in mice. J. Exp. Med. 182, 1527–1536 (1995).

    CAS  PubMed  Google Scholar 

  20. Brusselle, G.G. et al. Attenuation of allergic airway inflammation in IL-4 deficient mice. Clin. Exp. Allergy 24, 73–80 (1994).

    CAS  PubMed  Google Scholar 

  21. Corry, D.B. et al. Interleukin 4, but not interleukin 5 or eosinophils, is required in a murine model of acute airway hyperreactivity. J. Exp. Med. 183, 109–117 (1996).

    CAS  PubMed  Google Scholar 

  22. Wills-Karp, M. et al. Interleukin-13: central mediator of allergic asthma. Science 282, 2258–2261 (1998).

    CAS  PubMed  Google Scholar 

  23. Grünig, G. et al. Requirement for IL-13 independently of IL-4 in experimental asthma. Science [see comments] 282, 2261–2263 (1998).

    PubMed  PubMed Central  Google Scholar 

  24. Wenzel, S. et al. Dupilumab in persistent asthma with elevated eosinophil levels. N. Engl. J. Med. 368, 2455–2466 (2013).

    CAS  PubMed  Google Scholar 

  25. Corren, J. et al. Lebrikizumab treatment in adults with asthma. N. Engl. J. Med. 365, 1088–1098 (2011).

    CAS  PubMed  Google Scholar 

  26. Coyle, A.J., Perretti, F., Manzini, S. & Irvin, C.G. Cationic protein-induced sensory nerve activation: role of substance P in airway hyperresponsiveness and plasma protein extravasation. J. Clin. Invest. 94, 2301–2306 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Coyle, A.J., Ackerman, S.J., Burch, R., Proud, D. & Irvin, C.G. Human eosinophil-granule major basic protein and synthetic polycations induce airway hyperresponsiveness in vivo dependent on bradykinin generation. J. Clin. Invest. 95, 1735–1740 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Chu, D.K. et al. Indigenous enteric eosinophils control DCs to initiate a primary TH2 immune response in vivo. J. Exp. Med. 211, 1657–1672 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. van Rijt, L.S. et al. Airway eosinophils accumulate in the mediastinal lymph nodes but lack antigen-presenting potential for naive T cells. J. Immunol. 171, 3372–3378 (2003).

    CAS  PubMed  Google Scholar 

  30. Song, D.J. et al. Anti-Siglec-F antibody reduces allergen-induced eosinophilic inflammation and airway remodeling. J. Immunol. 183, 5333–5341 (2009).

    CAS  PubMed  Google Scholar 

  31. Fattouh, R. et al. Eosinophils are dispensable for allergic remodeling and immunity in a model of house dust mite-induced airway disease. Am. J. Respir. Crit. Care Med. 183, 179–188 (2011).

    PubMed  Google Scholar 

  32. Dworski, R., Simon, H.U., Hoskins, A. & Yousefi, S. Eosinophil and neutrophil extracellular DNA traps in human allergic asthmatic airways. J. Allergy Clin. Immunol. 127, 1260–1266 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Yousefi, S., Simon, D. & Simon, H.U. Eosinophil extracellular DNA traps: molecular mechanisms and potential roles in disease. Curr. Opin. Immunol. 24, 736–739 (2012).

    CAS  PubMed  Google Scholar 

  34. Ortega, H.G. et al. Mepolizumab treatment in patients with severe eosinophilic asthma. N. Engl. J. Med. 371, 1198–1207 (2014).

    PubMed  Google Scholar 

  35. Bel, E.H. et al. Oral glucocorticoid-sparing effect of mepolizumab in eosinophilic asthma. N. Engl. J. Med. 371, 1189–1197 (2014).

    PubMed  Google Scholar 

  36. Flood-Page, P. et al. Anti-IL-5 treatment reduces deposition of ECM proteins in the bronchial subepithelial basement membrane of mild atopic asthmatics. J. Clin. Invest. 112, 1029–1036 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Laviolette, M. et al. Effects of benralizumab on airway eosinophils in asthmatic patients with sputum eosinophilia. J. Allergy Clin. Immunol. 132, 1086–1096 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Fallon, P.G. et al. Identification of an interleukin (IL)-25-dependent cell population that provides IL-4, IL-5, and IL-13 at the onset of helminth expulsion. J. Exp. Med. 203, 1105–1116 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Fort, M.M. et al. IL-25 induces IL-4, IL-5, and IL-13 and TH2-associated pathologies in vivo. Immunity 15, 985–995 (2001).

    CAS  PubMed  Google Scholar 

  40. Kang, Z. et al. Epithelial cell-specific Act1 adaptor mediates interleukin-25-dependent helminth expulsion through expansion of Lin-c-Kit+ innate cell population. Immunity 36, 821–833 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Walker, J.A., Barlow, J.L. & McKenzie, A.N. Innate lymphoid cells–how did we miss them? Nat. Rev. Immunol. 13, 75–87 (2013).

    CAS  PubMed  Google Scholar 

  42. Moro, K. et al. Innate production of TH2 cytokines by adipose tissue-associated c-Kit+Sca-1+ lymphoid cells. Nature 463, 540–544 (2010).

    CAS  PubMed  Google Scholar 

  43. Barlow, J.L. et al. Innate IL-13-producing nuocytes arise during allergic lung inflammation and contribute to airways hyperreactivity. J. Allergy Clin. Immunol. 129, 191–198 (2012).

    CAS  PubMed  Google Scholar 

  44. Bartemes, K.R. et al. IL-33-responsive lineage- CD25+ CD44hi lymphoid cells mediate innate type 2 immunity and allergic inflammation in the lungs. J. Immunol. 188, 1503–1513 (2012).

    CAS  PubMed  Google Scholar 

  45. Yasuda, K. et al. Contribution of IL-33-activated type II innate lymphoid cells to pulmonary eosinophilia in intestinal nematode-infected mice. Proc. Natl. Acad. Sci. USA 109, 3451–3456 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Halim, T.Y., Krauss, R.H., Sun, A.C. & Takei, F. Lung natural helper cells are a critical source of TH2 cell-type cytokines in protease allergen-induced airway inflammation. Immunity 36, 451–463 (2012).

    CAS  PubMed  Google Scholar 

  47. Doherty, T.A. et al. Lung type 2 innate lymphoid cells express cysteinyl leukotriene receptor 1, which regulates TH2 cytokine production. J. Allergy Clin. Immunol. 132, 205–213 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Chang, Y.J. et al. Innate lymphoid cells mediate influenza-induced airway hyper-reactivity independently of adaptive immunity. Nat. Immunol. 12, 631–638 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Hong, J.Y. et al. Neonatal rhinovirus induces mucous metaplasia and airways hyperresponsiveness through IL-25 and type 2 innate lymphoid cells. J. Allergy Clin. Immunol. 134, 429–439 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Gorski, S.A., Hahn, Y.S. & Braciale, T.J. Group 2 innate lymphoid cell production of IL-5 is regulated by NKT cells during influenza virus infection. PLoS Pathog. 9, e1003615 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Klein Wolterink, R.G. et al. Pulmonary innate lymphoid cells are major producers of IL-5 and IL-13 in murine models of allergic asthma. Eur. J. Immunol. 42, 1106–1116 (2012).

    PubMed  Google Scholar 

  52. Gold, M.J. et al. Group 2 innate lymphoid cells facilitate sensitization to local, but not systemic, TH2-inducing allergen exposures. J. Allergy Clin. Immunol. 133, 1142–1148 (2014).

    CAS  PubMed  Google Scholar 

  53. Halim, T.Y. et al. Retinoic-acid-receptor-related orphan nuclear receptor alpha is required for natural helper cell development and allergic inflammation. Immunity 37, 463–474 (2012).

    CAS  PubMed  Google Scholar 

  54. Halim, T.Y. et al. Group 2 innate lymphoid cells are critical for the initiation of adaptive T helper 2 cell-mediated allergic lung inflammation. Immunity 40, 425–435 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Xue, L. et al. Prostaglandin D2 activates group 2 innate lymphoid cells through chemoattractant receptor-homologous molecule expressed on TH2 cells. J. Allergy Clin. Immunol. 133, 1184–1194 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Doherty, T.A. et al. STAT6 regulates natural helper cell proliferation during lung inflammation initiated by Alternaria. Am. J. Physiol. Lung Cell. Mol. Physiol. 303, L577–L588 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Barnig, C. et al. Lipoxin A4 regulates natural killer cell and type 2 innate lymphoid cell activation in asthma. Sci. Transl. Med. 5, 174ra126 (2013).

    Google Scholar 

  58. Juncadella, I.J. et al. Apoptotic cell clearance by bronchial epithelial cells critically influences airway inflammation. Nature 493, 547–551 (2013).

    CAS  PubMed  Google Scholar 

  59. McSorley, H.J., Blair, N.F., Smith, K.A., McKenzie, A.N. & Maizels, R.M. Blockade of IL-33 release and suppression of type 2 innate lymphoid cell responses by helminth secreted products in airway allergy. Mucosal Immunol. 7, 1068–1078 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Van Dyken, S.J. et al. Chitin activates parallel immune modules that direct distinct inflammatory responses via innate lymphoid type 2 and γδ T cells. Immunity 40, 414–424 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Oliphant, C.J. et al. MHCII-mediated dialog between group 2 innate lymphoid cells and CD4+ T cells potentiates type 2 immunity and promotes parasitic helminth expulsion. Immunity 41, 283–295 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Zaiss, D.M. et al. Amphiregulin, a TH2 cytokine enhancing resistance to nematodes. Science 314, 1746 (2006).

    CAS  PubMed  Google Scholar 

  63. Monticelli, L.A. et al. Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat. Immunol. 12, 1045–1054 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Porter, P.C. et al. Airway surface mycosis in chronic TH2-associated airway disease. J. Allergy Clin. Immunol. 134, 325–331 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Mjösberg, J. et al. The transcription factor GATA3 is essential for the function of human type 2 innate lymphoid cells. Immunity 37, 649–659 (2012).

    PubMed  Google Scholar 

  66. Mjösberg, J.M. et al. Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161. Nat. Immunol. 12, 1055–1062 (2011).

    PubMed  Google Scholar 

  67. Kabata, H. et al. Thymic stromal lymphopoietin induces corticosteroid resistance in natural helper cells during airway inflammation. Nat. Commun. 4, 2675 (2013).

    PubMed  Google Scholar 

  68. McKinley, L. et al. TH17 cells mediate steroid-resistant airway inflammation and airway hyperresponsiveness in mice. J. Immunol. 181, 4089–4097 (2008).

    CAS  PubMed  Google Scholar 

  69. Shaw, D.E. et al. Association between neutrophilic airway inflammation and airflow limitation in adults with asthma. Chest 132, 1871–1875 (2007).

    CAS  PubMed  Google Scholar 

  70. Manni, M.L. et al. The complex relationship between inflammation and lung function in severe asthma. Mucosal Immunol. 7, 1186–1198 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Schnyder-Candrian, S. et al. Interleukin-17 is a negative regulator of established allergic asthma. J. Exp. Med. 203, 2715–2725 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Wakashin, H. et al. IL-23 and TH17 cells enhance TH2-cell-mediated eosinophilic airway inflammation in mice. Am. J. Respir. Crit. Care Med. 178, 1023–1032 (2008).

    CAS  PubMed  Google Scholar 

  73. Besnard, A.G. et al. Dual role of IL-22 in allergic airway inflammation and its cross-talk with IL-17A. Am. J. Respir. Crit. Care Med. 183, 1153–1163 (2011).

    CAS  PubMed  Google Scholar 

  74. Brandt, E.B. et al. Diesel exhaust particle induction of IL-17A contributes to severe asthma. J. Allergy Clin. Immunol. 132, 1194–1204 (2013).

    CAS  PubMed  Google Scholar 

  75. Bellini, A. et al. Interleukin (IL)-4, IL-13, and IL-17A differentially affect the profibrotic and proinflammatory functions of fibrocytes from asthmatic patients. Mucosal Immunol. 5, 140–149 (2011).

    PubMed  Google Scholar 

  76. Zhao, J., Lloyd, C.M. & Noble, A. TH17 responses in chronic allergic airway inflammation abrogate regulatory T-cell-mediated tolerance and contribute to airway remodeling. Mucosal Immunol. 6, 335–346 (2012).

    PubMed  PubMed Central  Google Scholar 

  77. Kudo, M. et al. IL-17A produced by αβ T cells drives airway hyper-responsiveness in mice and enhances mouse and human airway smooth muscle contraction. Nat. Med. 18, 547–554 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Busse, W.W. et al. Randomized, double-blind, placebo-controlled study of brodalumab, a human anti-IL-17 receptor monoclonal antibody, in moderate to severe asthma. Am. J. Respir. Crit. Care Med. 188, 1294–1302 (2013).

    CAS  PubMed  Google Scholar 

  79. Berry, M.A. et al. Evidence of a role of tumor necrosis factor α in refractory asthma. N. Engl. J. Med. 354, 697–708 (2006).

    CAS  PubMed  Google Scholar 

  80. Wenzel, S.E. et al. A randomized, double-blind, placebo-controlled study of tumor necrosis factor-α blockade in severe persistent asthma. Am. J. Respir. Crit. Care Med. 179, 549–558 (2009).

    CAS  PubMed  Google Scholar 

  81. Morjaria, J.B. et al. The role of a soluble TNFα receptor fusion protein (etanercept) in corticosteroid refractory asthma: a double blind, randomised, placebo controlled trial. Thorax 63, 584–591 (2008).

    CAS  PubMed  Google Scholar 

  82. Porter, P.C. et al. Necessary and sufficient role for T helper cells to prevent fungal dissemination in allergic lung disease. Infect. Immun. 79, 4459–4471 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Wang, Y.H. et al. A novel subset of CD4+ TH2 memory/effector cells that produce inflammatory IL-17 cytokine and promote the exacerbation of chronic allergic asthma. J. Exp. Med. 207, 2479–2491 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Sutherland, T.E. et al. Chitinase-like proteins promote IL-17 mediated neutrophilia in a tradeoff between nematode killing and host damage. Nat. Immunol. 15, 1116–1125 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Irvin, C. et al. Increased frequency of dual-positive T2/T17 cells in bronchoalveolar lavage fluid characterizes a population of patients with severe asthma. J. Allergy Clin. Immunol. doi:10.1016/j.jaci.2014.05.038 (18 July 2014).

  86. Randolph, D.A., Stephens, R., Carruthers, C.J. & Chaplin, D.D. Cooperation between TH1 and TH2 cells in a murine model of eosinophilic airway inflammation. J. Clin. Invest. 104, 1021–1029 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Hansen, G., Berry, G., Dekruyff, R.H. & Umetsu, D.T. Allergen-specific TH1 cells fail to counterbalance TH2 cell-induced airway hyperreactivity but cause severe airway inflammation. J. Clin. Invest. 103, 175–183 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Ford, J.G. et al. IL-13 and IFN-γ: Interactions in lung inflammation. J. Immunol. 167, 1769–1777 (2001).

    CAS  PubMed  Google Scholar 

  89. Hessel, E.M. et al. Development of airway hyperresponsiveness is dependent on interferon-γ and independent of eosinophil infiltration. Am. J. Respir. Cell Mol. Biol. 16, 325–334 (1997).

    CAS  PubMed  Google Scholar 

  90. Sugimoto, T. et al. Interleukin 18 acts on memory T helper cells type 1 to induce airway inflammation and hyperresponsiveness in a naive host mouse. J. Exp. Med. 199, 535–545 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Krug, N. et al. T-cell cytokine profile evaluated at the single cell level in BAL and blood in allergic asthma. Am. J. Respir. Cell Mol. Biol. 14, 319–326 (1996).

    CAS  PubMed  Google Scholar 

  92. Corrigan, C.J. & Kay, A.B. CD4 T-lymphocyte activation in acute severe asthma. Am. Rev. Respir. Dis. 141, 970–977 (1990).

    CAS  PubMed  Google Scholar 

  93. Schmitt, E. et al. IL-9 production of naive CD4+ T cells depends on IL-2, is synergistically enhanced by a combination of TGF- and IL-4, and is inhibited by IFN-γ. J. Immunol. 153, 3989–3996 (1994).

    CAS  PubMed  Google Scholar 

  94. O'Garra, A., Stockinger, B. & Veldhoen, M. Differentiation of human TH17 cells does require TGF-β!. Nat. Immunol. 9, 588–590 (2008).

    CAS  PubMed  Google Scholar 

  95. Yao, W. et al. Interleukin-9 is required for allergic airway inflammation mediated by the cytokine TSLP. Immunity 38, 360–372 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Elyaman, W. et al. Notch receptors and Smad3 signaling cooperate in the induction of interleukin-9-producing T cells. Immunity 36, 623–634 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Xiao, X. et al. OX40 signaling favors the induction of TH9 cells and airway inflammation. Nat. Immunol. 13, 981–990 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Chang, H.C. et al. The transcription factor PU.1 is required for the development of IL-9-producing T cells and allergic inflammation. Nat. Immunol. 11, 527–534 (2011).

    Google Scholar 

  99. Liao, W. et al. Opposing actions of IL-2 and IL-21 on TH9 differentiation correlate with their differential regulation of BCL6 expression. Proc. Natl. Acad. Sci. USA 111, 3508–3513 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Yang, X.O. et al. The signaling suppressor CIS controls proallergic T cell development and allergic airway inflammation. Nat. Immunol. 14, 732–740 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Staudt, V. et al. Interferon-regulatory factor 4 is essential for the developmental program of T helper 9 cells. Immunity 33, 192–202 (2010).

    CAS  PubMed  Google Scholar 

  102. Kearley, J. et al. IL-9 governs allergen-induced mast cell numbers in the lung and chronic remodeling of the airways. Am. J. Respir. Crit. Care Med. 183, 865–875 (2011).

    CAS  PubMed  Google Scholar 

  103. Erpenbeck, V.J. et al. Segmental allergen challenge in patients with atopic asthma leads to increased IL-9 expression in bronchoalveolar lavage fluid lymphocytes. J. Allergy Clin. Immunol. 111, 1319–1327 (2003).

    CAS  PubMed  Google Scholar 

  104. Kerzerho, J. et al. Programmed cell death ligand 2 regulates TH9 differentiation and induction of chronic airway hyperreactivity. J. Allergy Clin. Immunol. 131, 1048–1057 (2013).

    CAS  PubMed  Google Scholar 

  105. Wilhelm, C. et al. An IL-9 fate reporter demonstrates the induction of an innate IL-9 response in lung inflammation. Nat. Immunol. 12, 1071–1077 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Turner, J.E. et al. IL-9-mediated survival of type 2 innate lymphoid cells promotes damage control in helminth-induced lung inflammation. J. Exp. Med. 210, 2951–2965 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Parker, J.M. et al. Safety profile and clinical activity of multiple subcutaneous doses of MEDI-528, a humanized anti-interleukin-9 monoclonal antibody, in two randomized phase 2a studies in subjects with asthma. BMC Pulm. Med. 11, 14 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Ostroukhova, M. et al. Tolerance induced by inhaled antigen involves CD4+ T cells expressing membrane-bound TGF-β and FOXP3. J. Clin. Invest. 114, 28–38 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Josefowicz, S.Z. et al. Extrathymically generated regulatory T cells control mucosal TH2 inflammation. Nature 482, 395–399 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Weiss, J.M. et al. Neuropilin 1 is expressed on thymus-derived natural regulatory T cells, but not mucosa-generated induced Foxp3+ T reg cells. J. Exp. Med. 209, 1723–1742 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Lewkowich, I.P. et al. CD4+CD25+ T cells protect against experimentally induced asthma and alter pulmonary dendritic cell phenotype and function. J. Exp. Med. 202, 1549–1561 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Huang, M.T. et al. Regulatory T cells negatively regulate neovasculature of airway remodeling via DLL4-Notch signaling. J. Immunol. 183, 4745–4754 (2009).

    CAS  PubMed  Google Scholar 

  113. Whitehead, G.S. et al. IL-35 production by inducible costimulator (ICOS)-positive regulatory T cells reverses established IL-17-dependent allergic airways disease. J. Allergy Clin. Immunol. 129, 207–215 (2012).

    CAS  PubMed  Google Scholar 

  114. Mamessier, E. et al. T-cell activation during exacerbations: a longitudinal study in refractory asthma. Allergy 63, 1202–1210 (2008).

    CAS  PubMed  Google Scholar 

  115. Hartl, D. et al. Quantitative and functional impairment of pulmonary CD4+CD25hi regulatory T cells in pediatric asthma. J. Allergy Clin. Immunol. 119, 1258–1266 (2007).

    CAS  PubMed  Google Scholar 

  116. Smyth, L.J., Eustace, A., Kolsum, U., Blaikely, J. & Singh, D. Increased airway T regulatory cells in asthmatic subjects. Chest 138, 905–912 (2010).

    PubMed  Google Scholar 

  117. Barczyk, A. et al. Decreased percentage of CD4+Foxp3+TGF-β+ and increased percentage of CD4+IL-17+ cells in bronchoalveolar lavage of asthmatics. J. Inflamm. (Lond.) 11, 22 (2014).

    Google Scholar 

  118. Joller, N. et al. Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory TH1 and TH17 cell responses. Immunity 40, 569–581 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Lambrecht, B.N. & Hammad, H. Lung dendritic cells in respiratory viral infection and asthma: from protection to immunopathology. Annu. Rev. Immunol. 30, 243–270 (2012).

    CAS  PubMed  Google Scholar 

  120. Plantinga, M. et al. Conventional and monocyte-derived CD11b+ dendritic cells initiate and maintain T helper 2 cell-mediated immunity to house dust mite allergen. Immunity 38, 322–335 (2013).

    CAS  PubMed  Google Scholar 

  121. Williams, J.W. et al. Transcription factor IRF4 drives dendritic cells to promote TH2 differentiation. Nat. Commun. 4, 2990 (2013).

    PubMed  Google Scholar 

  122. Raymond, M. et al. Selective control of SIRP-α-positive airway dendritic cell trafficking through CD47 is critical for the development of TH2-mediated allergic inflammation. J. Allergy Clin. Immunol. 124, 1333–1342 (2009).

    CAS  PubMed  Google Scholar 

  123. Semmrich, M. et al. Directed antigen targeting in vivo identifies a role for CD103+ dendritic cells in both tolerogenic and immunogenic T-cell responses. Mucosal Immunol. 5, 150–160 (2012).

    CAS  PubMed  Google Scholar 

  124. Khare, A. et al. Cutting edge: inhaled antigen upregulates retinaldehyde dehydrogenase in lung CD103+ but not plasmacytoid dendritic cells to induce Foxp3 de novo in CD4+ T cells and promote airway tolerance. J. Immunol. 191, 25–29 (2013).

    CAS  PubMed  Google Scholar 

  125. de Heer, H.J. et al. Essential role of lung plasmacytoid dendritic cells in preventing asthmatic reactions to harmless inhaled antigen. J. Exp. Med. 200, 89–98 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Kool, M. et al. An anti-inflammatory role for plasmacytoid dendritic cells in allergic airway inflammation. J. Immunol. 183, 1074–1082 (2009).

    CAS  PubMed  Google Scholar 

  127. Lambrecht, B.N. & Hammad, H. The airway epithelium in asthma. Nat. Med. 18, 684–692 (2012).

    CAS  PubMed  Google Scholar 

  128. Millien, V.O. et al. Cleavage of fibrinogen by proteinases elicits allergic responses through Toll-like receptor 4. Science 341, 792–796 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Hammad, H. et al. House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. Nat. Med. 15, 410–416 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Willart, M.A. et al. Interleukin-1α controls allergic sensitization to inhaled house dust mite via the epithelial release of GM-CSF and IL-33. J. Exp. Med. 209, 1505–1517 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Herre, J. et al. Allergens as immunomodulatory proteins: the cat dander protein Fel d 1 enhances TLR activation by lipid ligands. J. Immunol. 191, 1529–1535 (2013).

    CAS  PubMed  Google Scholar 

  132. Kool, M. et al. An unexpected role for uric acid as an inducer of T helper 2 cell immunity to inhaled antigens and inflammatory mediator of allergic asthma. Immunity 34, 527–540 (2011).

    CAS  PubMed  Google Scholar 

  133. Idzko, M. et al. Extracellular ATP triggers and maintains asthmatic airway inflammation by activating dendritic cells. Nat. Med. 13, 913–919 (2007).

    CAS  PubMed  Google Scholar 

  134. Ullah, M.A. et al. Receptor for advanced glycation end products and its ligand high-mobility group box-1 mediate allergic airway sensitization and airway inflammation. J. Allergy Clin. Immunol. 134, 440–450 (2014).

    CAS  PubMed  Google Scholar 

  135. Barrett, N.A. et al. Dectin-2 mediates TH2 immunity through the generation of cysteinyl leukotrienes. J. Exp. Med. 208, 593–604 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Norimoto, A. et al. Dectin-2 promotes house dust mite-induced TH2 and TH17 cell differentiation and allergic airway inflammation in mice. Am. J. Respir. Cell Mol. Biol. 51, 201–209 (2014).

    PubMed  Google Scholar 

  137. Besnard, A.G. et al. IL-33-activated dendritic cells are critical for allergic airway inflammation. Eur. J. Immunol. 41, 1675–1686 (2011).

    CAS  PubMed  Google Scholar 

  138. Bell, B.D. et al. The transcription factor STAT5 is critical in dendritic cells for the development of TH2 but not TH1 responses. Nat. Immunol. 14, 364–371 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Chu, D.K. et al. IL-33, but not thymic stromal lymphopoietin or IL-25, is central to mite and peanut allergic sensitization. J. Allergy Clin. Immunol. 131, 187–200 (2013).

    CAS  PubMed  Google Scholar 

  140. Huh, J.C. et al. Bidirectional interactions between antigen-bearing respiratory tract dendritic cells (DCs) and T cells precede the late phase reaction in experimental asthma: DC activation occurs in the airway mucosa but not in the lung parenchyma. J. Exp. Med. 198, 19–30 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Thornton, E.E. et al. Spatiotemporally separated antigen uptake by alveolar dendritic cells and airway presentation to T cells in the lung. J. Exp. Med. 209, 1183–1199 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. van Rijt, L.S. et al. in vivo depletion of lung CD11c+ dendritic cells during allergen challenge abrogates the characteristic features of asthma. J. Exp. Med. 201, 981–991 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. van Rijt, L.S. et al. Persistent activation of dendritic cells after resolution of allergic airway inflammation breaks tolerance to inhaled allergens in mice. Am. J. Respir. Crit. Care Med. 184, 303–311 (2011).

    CAS  PubMed  Google Scholar 

  144. Gauvreau, G.M. et al. Effects of an anti-TSLP antibody on allergen-induced asthmatic responses. N. Engl. J. Med. 370, 2102–2110 (2014).

    PubMed  Google Scholar 

  145. Yu, M. et al. Identification of an IFN-γ/mast cell axis in a mouse model of chronic asthma. J. Clin. Invest. 121, 3133–3143 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Heger, K. et al. A20-deficient mast cells exacerbate inflammatory responses in vivo. PLoS Biol. 12, e1001762 (2014).

    PubMed  PubMed Central  Google Scholar 

  147. Williams, C.M. & Galli, S.J. Mast cells can amplify airway reactivity and features of chronic inflammation in an asthma model in mice. J. Exp. Med. 192, 455–462 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Motomura, Y. et al. Basophil-derived interleukin-4 controls the function of natural helper cells, a member of ILC2s, in lung inflammation. Immunity 40, 758–771 (2014).

    CAS  PubMed  Google Scholar 

  149. Brightling, C.E. et al. Mast-cell infiltration of airway smooth muscle in asthma. N. Engl. J. Med. 346, 1699–1705 (2002).

    PubMed  Google Scholar 

  150. Dougherty, R.H. et al. Accumulation of intraepithelial mast cells with a unique protease phenotype in TH2-high asthma. J. Allergy Clin. Immunol. 125, 1046–1053 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Hammad, H. et al. Inflammatory dendritic cells–not basophils–are necessary and sufficient for induction of TH2 immunity to inhaled house dust mite allergen. J. Exp. Med. 207, 2097–2111 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Tang, H. et al. The T helper type 2 response to cysteine proteases requires dendritic cell-basophil cooperation via RAS-mediated signaling. Nat. Immunol. 11, 608–617 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Ohnmacht, C. et al. Basophils orchestrate chronic allergic dermatitis and protective immunity against helminths. Immunity 33, 364–374 (2010).

    CAS  PubMed  Google Scholar 

  154. Wakahara, K. et al. Basophils are recruited to inflamed lungs and exacerbate memory TH2 responses in mice and humans. Allergy 68, 180–189 (2013).

    CAS  PubMed  Google Scholar 

  155. Holgate, S., Smith, N., Massanari, M. & Jimenez, P. Effects of omalizumab on markers of inflammation in patients with allergic asthma. Allergy 64, 1728–1736 (2009).

    CAS  PubMed  Google Scholar 

  156. Maurer, D. et al. Peripheral blood dendritic cells express Fc ɛ RI as a complex composed of Fc ɛ RI α- and Fc ɛ RI γ-chains and can use this receptor for IgE-mediated allergen presentation. J. Immunol. 157, 607–616 (1996).

    CAS  PubMed  Google Scholar 

  157. Bieber, T. et al. Human epidermal Langerhans cells express the high affinity receptor for immunoglobulin E (Fc ɛ RI). J. Exp. Med. 175, 1285–1290 (1992).

    CAS  PubMed  Google Scholar 

  158. Maurer, D. et al. Fc ɛ receptor I on dendritic cells delivers IgE-bound multivalent antigens into a cathepsin S-dependent pathway of MHC class II presentation. J. Immunol. 161, 2731–2739 (1998).

    CAS  PubMed  Google Scholar 

  159. Khan, S.H. & Grayson, M.H. Cross-linking IgE augments human conventional dendritic cell production of CC chemokine ligand 28. J. Allergy Clin. Immunol. 125, 265–267 (2010).

    CAS  PubMed  Google Scholar 

  160. Sallmann, E. et al. High-affinity IgE receptors on dendritic cells exacerbate TH2-dependent inflammation. J. Immunol. 187, 164–171 (2011).

    CAS  PubMed  Google Scholar 

  161. Grayson, M.H. et al. Induction of high-affinity IgE receptor on lung dendritic cells during viral infection leads to mucous cell metaplasia. J. Exp. Med. 204, 2759–2769 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Novak, N., Bieber, T. & Katoh, N. Engagement of Fc ɛ RI on human monocytes induces the production of IL-10 and prevents their differentiation in dendritic cells. J. Immunol. 167, 797–804 (2001).

    CAS  PubMed  Google Scholar 

  163. Platzer, B. et al. Dendritic cell-bound IgE functions to restrain allergic inflammation at mucosal sites. Mucosal Immunol. doi:10.1038/mi.2014.85 (17 September 2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Jackson, D.J. et al. Wheezing rhinovirus illnesses in early life predict asthma development in high-risk children. Am. J. Respir. Crit. Care Med. 178, 667–672 (2008).

    PubMed  PubMed Central  Google Scholar 

  165. Calşkan, M. et al. Rhinovirus wheezing illness and genetic risk of childhood-onset asthma. N. Engl. J. Med. 368, 1398–1407 (2013).

    Google Scholar 

  166. Papi, A. et al. Rhinovirus infection causes steroid resistance in airway epithelium through nuclear factor κB and c-Jun N-terminal kinase activation. J. Allergy Clin. Immunol. 132, 1075–1085 (2013).

    CAS  PubMed  Google Scholar 

  167. Zhu, J. et al. Airway inflammation and illness severity in response to experimental rhinovirus infection in asthma. Chest 145, 1219–1229 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Bartlett, N.W. et al. Mouse models of rhinovirus-induced disease and exacerbation of allergic airway inflammation. Nat. Med. 14, 199–204 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Collison, A. et al. The E3 ubiquitin ligase midline 1 promotes allergen and rhinovirus-induced asthma by inhibiting protein phosphatase 2A activity. Nat. Med. 19, 232–237 (2013).

    CAS  PubMed  Google Scholar 

  170. Kim, E.Y. et al. Persistent activation of an innate immune response translates respiratory viral infection into chronic lung disease. Nat. Med. 14, 633–640 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Kaiko, G.E. et al. Toll-like receptor 7 gene deficiency and early-life Pneumovirus infection interact to predispose toward the development of asthma-like pathology in mice. J. Allergy Clin. Immunol. 131, 1331–1339 (2013).

    CAS  PubMed  Google Scholar 

  172. Wark, P.A. et al. Asthmatic bronchial epithelial cells have a deficient innate immune response to infection with rhinovirus. J. Exp. Med. 201, 937–947 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Contoli, M. et al. Role of deficient type III interferon-λ production in asthma exacerbations. Nat. Med. 12, 1023–1026 (2006).

    CAS  PubMed  Google Scholar 

  174. Edwards, M.R. et al. Impaired innate interferon induction in severe therapy resistant atopic asthmatic children. Mucosal Immunol. 6, 797–806 (2013).

    CAS  PubMed  Google Scholar 

  175. Kennedy, J.L. et al. Comparison of viral load in individuals with and without asthma during infections with rhinovirus. Am. J. Respir. Crit. Care Med. 189, 532–539 (2014).

    PubMed  PubMed Central  Google Scholar 

  176. Bochkov, Y.A. et al. Rhinovirus-induced modulation of gene expression in bronchial epithelial cells from subjects with asthma. Mucosal Immunol. 3, 69–80 (2010).

    CAS  PubMed  Google Scholar 

  177. Spann, K.M. et al. Viral and host factors determine innate immune responses in airway epithelial cells from children with wheeze and atopy. Thorax 69, 918–925 (2014).

    PubMed  Google Scholar 

  178. Durrani, S.R. et al. Innate immune responses to rhinovirus are reduced by the high-affinity IgE receptor in allergic asthmatic children. J. Allergy Clin. Immunol. 130, 489–495 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Gill, M.A. et al. Counterregulation between the FcɛRI pathway and antiviral responses in human plasmacytoid dendritic cells. J. Immunol. 184, 5999–6006 (2010).

    CAS  PubMed  Google Scholar 

  180. Tversky, J.R. et al. Human blood dendritic cells from allergic subjects have impaired capacity to produce interferon-α via Toll-like receptor 9. Clin. Exp. Allergy 38, 781–788 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Mathur, S.K. et al. Interaction between allergy and innate immunity: model for eosinophil regulation of epithelial cell interferon expression. Ann. Allergy Asthma Immunol. 111, 25–31 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Osborne, L.C. et al. Coinfection. Virus-helminth coinfection reveals a microbiota-independent mechanism of immunomodulation. Science 345, 578–582 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Ober, C. et al. Effect of variation in CHI3L1 on serum YKL-40 level, risk of asthma, and lung function. N. Engl. J. Med. 358, 1682–1691 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Djukanovicć´, R. et al. The effect of inhaled IFN-β on worsening of asthma symptoms caused by viral infections. A randomized trial. Am. J. Respir. Crit. Care Med. 190, 145–154 (2014).

    Google Scholar 

  185. Brusselle, G.G., Maes, T. & Bracke, K.R. Eosinophils in the spotlight: eosinophilic airway inflammation in nonallergic asthma. Nat. Med. 19, 977–979 (2013).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by the European Union European Research Council (B.N.L.), the European Union Framework Programme 7 (MedALL and EUBIOPRED to B.N.L.), the University of Ghent Multidisciplinary Research Platform (Group-ID, to B.N.L.) and Fonds Wetenschappelijk Onderzoek Vlaanderen (B.N.L. and H.H.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bart N Lambrecht or Hamida Hammad.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lambrecht, B., Hammad, H. The immunology of asthma. Nat Immunol 16, 45–56 (2015). https://doi.org/10.1038/ni.3049

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.3049

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing