Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Integrative biology of T cell activation

Subjects

This article has been updated

Abstract

The activation of T cells mediated by the T cell antigen receptor (TCR) requires the interaction of dozens of proteins, and its malfunction has pathological consequences. Our major focus is on new developments in the systems-level understanding of the TCR signal-transduction network. To make sense of the formidable complexity of this network, we argue that 'fine-grained' methods are needed to assess the relationships among a few components that interact on a nanometric scale, and those should be integrated with high-throughput '-omic' approaches that simultaneously capture large numbers of parameters. We illustrate the utility of this integrative approach with the transmembrane signaling protein Lat, which is a key signaling hub of the TCR signal-transduction network, as a connecting thread.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the early TCR signal-transduction network.
Figure 2: Positive regulatory plug-ins of the Lat interactome.
Figure 3: Negative regulatory plug-ins present in the Lat interactome.
Figure 4: Lat nanoclusters and microclusters.

Similar content being viewed by others

Change history

  • 25 August 2014

    In the version of this article initially published, the page ranges for references 7 and 15 were missing. Those are 815-823 (ref. 7) and 808-814 (ref. 15). The error has been corrected in the HTML and PDF versions of the article.

References

  1. Huang, J. et al. A single peptide-major histocompatibility complex ligand triggers digital cytokine secretion in CD4+ T cells. Immunity 39, 846–857 (2013).Two key papers (refs. 1 and 3) showing that a single peptide-MHC suffices to trigger T cell activation.

    CAS  PubMed  Google Scholar 

  2. Manz, B.N., Jackson, B.L., Petit, R.S., Dustin, M.L. & Groves, J. T-cell triggering thresholds are modulated by the number of antigen within individual T-cell receptor clusters. Proc. Natl. Acad. Sci. USA 108, 9089–9094 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. O'Donoghue, G.P., Pielak, R.M., Smoligovets, A.A., Lin, J.J. & Groves, J.T. Direct single molecule measurement of TCR triggering by agonist pMHC in living primary T cells. eLife 2, e00778 (2013).

    PubMed  PubMed Central  Google Scholar 

  4. Houtman, J.C., Houghtling, R.A., Barda-Saad, M., Toda, Y. & Samelson, L.E. Early phosphorylation kinetics of proteins involved in proximal TCR-mediated signaling pathways. J. Immunol. 175, 2449–2458 (2005).

    CAS  PubMed  Google Scholar 

  5. Huse, M. et al. Spatial and temporal dynamics of T cell receptor signaling with a photoactivatable agonist. Immunity 27, 76–88 (2007).Two key papers (refs. 5 and 6) showing the high speed at which TCR signaling proceeds.

    CAS  PubMed  Google Scholar 

  6. Brodovitch, A., Bongrand, P. & Pierres, A. T lymphocytes sense antigens within seconds and make a decision within one minute. J. Immunol. 191, 2064–2071 (2013).

    CAS  PubMed  Google Scholar 

  7. Hogquist, K.A.J. & Jameson, S.C. The self-obsession of T cells: how TCR signaling thresholds affect fate 'decisions' and effector function. Nat. Immunol. 15, 815–823 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Pitcher, L.A. et al. The formation and functions of the 21- and 23-kDa tyrosine-phosphorylated TCR zeta subunits. Immunol. Rev. 191, 47–61 (2003).

    CAS  PubMed  Google Scholar 

  9. Moran, A.E. et al. T cell receptor signal strength in Treg and iNKT cell development demonstrated by a novel fluorescent reporter mouse. J. Exp. Med. 208, 1279–1289 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Hochweller, K. et al. Dendritic cells control T cell tonic signaling required for responsiveness to foreign antigen. Proc. Natl. Acad. Sci. USA 107, 5931–5936 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Huppa, J.B. & Davis, M.M. The interdisciplinary science of T-cell recognition. Adv. Immunol. 119, 1–50 (2013).

    CAS  PubMed  Google Scholar 

  12. Chakraborty, A.K.W. & Weiss, A. Insights into the initiation of TCR signaling. Nat. Immunol. 15, 815––823 (2014).

    Google Scholar 

  13. Sangani, D., Venien-Bryan, C. & Harder, T. Phosphotyrosine-dependent in vitro reconstitution of recombinant LAT-nucleated multiprotein signalling complexes on liposomes. Mol. Membr. Biol. 26, 159–170 (2009).

    CAS  PubMed  Google Scholar 

  14. Roncagalli, R. et al. Quantitative proteomics analysis of signalosome dynamics in primary T cells identifies the surface receptor CD6 as a Lat adaptor-independent TCR signaling hub. Nat. Immunol. 15, 384–392 (2014).Key paper describing the Zap70–Lat–SLP-76 interactome in primary CD4+ T cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Navarro, M.N.C. & Cantrell, D. Serine-threonine kinases in TCR signaling. Nat. Immunol. 15, 808–814 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Mingueneau, M. et al. Loss of the LAT adaptor converts antigen-responsive T cells into pathogenic effectors that function independently of the T cell receptor. Immunity 31, 197–208 (2009).

    CAS  PubMed  Google Scholar 

  17. Salek, M. et al. Quantitative phosphoproteome analysis unveils LAT as a modulator of CD3zeta and ZAP-70 tyrosine phosphorylation. PLoS ONE 8, e77423 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ou-Yang, C.W. et al. Role of LAT in the granule-mediated cytotoxicity of CD8 T cells. Mol. Cell. Biol. 32, 2674–2684 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Pagán, A.J., Pepper, M., Chu, H.H., Green, J.M. & Jenkins, M.K. CD28 promotes CD4+ T cell clonal expansion during infection independently of its YMNM and PYAP motifs. J. Immunol. 189, 2909–2917 (2012).

    PubMed  Google Scholar 

  20. Kong, K.F. et al. A motif in the V3 domain of the kinase PKC-θ determines its localization in the immunological synapse and functions in T cells via association with CD28. Nat. Immunol. 12, 1105–1112 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Chuang, H.C. et al. The kinase GLK controls autoimmunity and NF-κB signaling by activating the kinase PKC-θ in T cells. Nat. Immunol. 12, 1113–1118 (2011).

    CAS  PubMed  Google Scholar 

  22. Liang, Y. et al. The lymphoid lineage-specific actin-uncapping protein Rltpr is essential for costimulation via CD28 and the development of regulatory T cells. Nat. Immunol. 14, 858–866 (2013).

    CAS  PubMed  Google Scholar 

  23. Michel, F. & Acuto, O. CD28 costimulation: a source of Vav-1 for TCR signaling with the help of SLP-76? Sci. STKE 2002, pe35 (2002).

    PubMed  Google Scholar 

  24. Kim, J.E. & White, F.M. Quantitative analysis of phosphotyrosine signaling networks triggered by CD3 and CD28 costimulation in Jurkat cells. J. Immunol. 176, 2833–2843 (2006).

    CAS  PubMed  Google Scholar 

  25. Iezzi, G., Karjalainen, K. & Lanzavecchia, A. The duration of antigenic stimulation determines the fate of naive and effector T cells. Immunity 8, 89–95 (1998).

    CAS  PubMed  Google Scholar 

  26. Chen, L. & Flies, D.B. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat. Rev. Immunol. 13, 227–242 (2013).

    PubMed  PubMed Central  Google Scholar 

  27. Simpson, T.R. et al. Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma. J. Exp. Med. 210, 1695–1710 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. van Panhuys, N., Klauschen, F. & Germain, R.N. T cell receptor-dependent signal intensity dominantly controls CD4+ T cell polarization in vivo. Immunity 41, 63–74 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Varjosalo, M. et al. Interlaboratory reproducibility of large-scale human protein-complex analysis by standardized AP-MS. Nat. Methods 10, 307–314 (2013).

    CAS  PubMed  Google Scholar 

  30. Zheng, Y. et al. Temporal regulation of EGF signalling networks by the scaffold protein Shc1. Nature 499, 166–171 (2013).Key paper analyzing the causal relationships within a complex signal-transduction network.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Mayya, V. et al. Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions. Sci. Signal. 2, ra46 (2009).

    PubMed  Google Scholar 

  32. Mbonye, U.R. et al. Phosphorylation of CDK9 at Ser175 enhances HIV transcription and is a marker of activated P-TEFb in CD4+ T lymphocytes. PLoS Pathog. 9, e1003338 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Astoul, E., Edmunds, C., Cantrell, D.A. & Ward, S.G. PI 3-K and T-cell activation: limitations of T-leukemic cell lines as signaling models. Trends Immunol. 22, 490–496 (2001).

    CAS  PubMed  Google Scholar 

  34. Brockmeyer, C. et al. T cell receptor (TCR)-induced tyrosine phosphorylation dynamics identifies THEMIS as a new TCR signalosome component. J. Biol. Chem. 286, 7535–7547 (2011).

    CAS  PubMed  Google Scholar 

  35. Navarro, M.N., Goebel, J., Feijoo-Carnero, C., Morrice, N. & Cantrell, D.A. Phosphoproteomic analysis reveals an intrinsic pathway for the regulation of histone deacetylase 7 that controls the function of cytotoxic T lymphocytes. Nat. Immunol. 12, 352–361 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Cruz-Orcutt, N., Vacaflores, A., Connolly, S.F., Bunnell, S.C. & Houtman, J.C. Activated PLC-γ1 is catalytically induced at LAT but activated PLC-γ1 is localized at both LAT- and TCR-containing complexes. Cell. Signal. 26, 797–805 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang, W. et al. Essential role of LAT in T cell development. Immunity 10, 323–332 (1999).

    CAS  PubMed  Google Scholar 

  38. Aguado, E. et al. Induction of T helper type 2 immunity by a point mutation in the LAT adaptor. Science 296, 2036–2040 (2002).

    CAS  PubMed  Google Scholar 

  39. Sommers, C.L. et al. A LAT mutation that inhibits T cell development yet induces lymphoproliferation. Science 296, 2040–2043 (2002).

    CAS  PubMed  Google Scholar 

  40. Chuck, M.I., Zhu, M., Shen, S. & Zhang, W. The role of the LAT-PLC-γ1 interaction in T regulatory cell function. J. Immunol. 184, 2476–2486 (2010).

    CAS  PubMed  Google Scholar 

  41. Koonpaew, S., Shen, S., Flowers, L. & Zhang, W. LAT-mediated signaling in CD4+CD25+ regulatory T cell development. J. Exp. Med. 203, 119–129 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang, Y. et al. Th2 lymphoproliferative disorder of LatY136F mutant mice unfolds independently of TCR-MHC engagement and is insensitive to the action of Foxp3+ regulatory T cells. J. Immunol. 180, 1565–1575 (2008).

    CAS  PubMed  Google Scholar 

  43. Genton, C. et al. The Th2 lymphoproliferation developing in LatY136F mutant mice triggers polyclonal B cell activation and systemic autoimmunity. J. Immunol. 177, 2285–2293 (2006).

    CAS  PubMed  Google Scholar 

  44. Chevrier, S., Genton, C., Malissen, B., Malissen, M. & Acha-Orbea, H. Dominant role of CD80–CD86 Over CD40 and ICOSL in the massive polyclonal B cell activation mediated by LAT(Y136F) CD4+ T cells. Front Immunol 3, 27 (2012).

    PubMed  PubMed Central  Google Scholar 

  45. Nuñez-Cruz, S. et al. LAT regulates gammadelta T cell homeostasis and differentiation. Nat. Immunol. 4, 999–1008 (2003).

    PubMed  Google Scholar 

  46. Archambaud, C. et al. STAT6 deletion converts the Th2 inflammatory pathology afflicting Lat(Y136F) mice into a lymphoproliferative disorder involving Th1 and CD8 effector T cells. J. Immunol. 182, 2680–2689 (2009).

    CAS  PubMed  Google Scholar 

  47. Roncagalli, R., Mingueneau, M., Gregoire, C., Malissen, M. & Malissen, B. LAT signaling pathology: an “autoimmune” condition without T cell self-reactivity. Trends Immunol. 31, 253–259 (2010).

    CAS  PubMed  Google Scholar 

  48. Kortum, R.L. et al. A phospholipase C-γ1-independent, RasGRP1-ERK-dependent pathway drives lymphoproliferative disease in linker for activation of T cells-Y136F mutant mice. J. Immunol. 190, 147–158 (2013).

    CAS  PubMed  Google Scholar 

  49. Cao, L. et al. Quantitative phosphoproteomics reveals SLP-76 dependent regulation of PAG and Src family kinases in T cells. PLoS ONE 7, e46725 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Siggs, O.M. et al. Opposing functions of the T cell receptor kinase ZAP-70 in immunity and tolerance differentially titrate in response to nucleotide substitutions. Immunity 27, 912–926 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Hirota, K. et al. T cell self-reactivity forms a cytokine milieu for spontaneous development of IL-17+ Th cells that cause autoimmune arthritis. J. Exp. Med. 204, 41–47 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Hsu, L.Y., Tan, Y.X., Xiao, Z., Malissen, M. & Weiss, A. A hypomorphic allele of ZAP-70 reveals a distinct thymic threshold for autoimmune disease versus autoimmune reactivity. J. Exp. Med. 206, 2527–2541 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Vang, T. et al. Autoimmune-associated lymphoid tyrosine phosphatase is a gain-of-function variant. Nat. Genet. 37, 1317–1319 (2005).

    CAS  PubMed  Google Scholar 

  54. Oh-Hora, M. et al. Dual functions for the endoplasmic reticulum calcium sensors STIM1 and STIM2 in T cell activation and tolerance. Nat. Immunol. 9, 432–443 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Chabod, M. et al. A spontaneous mutation of the rat Themis gene leads to impaired function of regulatory T cells linked to inflammatory bowel disease. PLoS Genet. 8, e1002461 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. McDonald, C.B. et al. Multivalent binding and facilitated diffusion account for the formation of the Grb2-Sos1 signaling complex in a cooperative manner. Biochemistry 51, 2122–2135 (2012).

    CAS  PubMed  Google Scholar 

  57. Houtman, J.C. et al. Oligomerization of signaling complexes by the multipoint binding of GRB2 to both LAT and SOS1. Nat. Struct. Mol. Biol. 13, 798–805 (2006).One of three key papers (refs. 57, 58 and 99) demonstrating the role of cooperative interactions in the assembly of the TCR signal-transduction network.

    CAS  PubMed  Google Scholar 

  58. Kortum, R.L. et al. The ability of Sos1 to oligomerize the adaptor protein LAT is separable from its guanine nucleotide exchange activity in vivo. Sci. Signal. 6, ra99 (2013).

    PubMed  PubMed Central  Google Scholar 

  59. Sherman, E. et al. Functional nanoscale organization of signaling molecules downstream of the T cell antigen receptor. Immunity 35, 705–720 (2011).One of two key papers (refs. 59 and 61) describing the use of super-resolution microscopy to determine the nanoscale organisation of signaling molecules in T cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Sherman, E., Barr, V.A. & Samelson, L.E. Resolving multi-molecular protein interactions by photoactivated localization microscopy. Methods 59, 261–269 (2013).

    CAS  PubMed  Google Scholar 

  61. Hsu, C.J. et al. Ligand mobility modulates immunological synapse formation and T cell activation. PLoS ONE 7, e32398 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. James, J.R. et al. The T cell receptor triggering apparatus is composed of monovalent or monomeric proteins. J. Biol. Chem. 286, 31993–32001 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Roybal, K.T., Sinai, P., Verkade, P., Murphy, R.F. & Wulfing, C. The actin-driven spatiotemporal organization of T-cell signaling at the system scale. Immunol. Rev. 256, 133–147 (2013).

    CAS  PubMed  Google Scholar 

  64. Bonello, G. et al. Dynamic recruitment of the adaptor protein LAT: LAT exists in two distinct intracellular pools and controls its own recruitment. J. Cell Sci. 117, 1009–1016 (2004).

    CAS  PubMed  Google Scholar 

  65. Williamson, D.J. et al. Pre-existing clusters of the adaptor Lat do not participate in early T cell signaling events. Nat. Immunol. 12, 655–662 (2011).One of three key papers (refs. 65–67) suggesting a role for intracellular vesicular Lat molecules in the TCR signal-transduction network.

    CAS  PubMed  Google Scholar 

  66. Larghi, P. et al. VAMP7 controls T cell activation by regulating the recruitment and phosphorylation of vesicular Lat at TCR-activation sites. Nat. Immunol. 14, 723–731 (2013).

    CAS  PubMed  Google Scholar 

  67. Purbhoo, M.A. et al. Dynamics of subsynaptic vesicles and surface microclusters at the immunological synapse. Sci. Signal. 3, ra36 (2010).

    PubMed  Google Scholar 

  68. Malissen, B. & Marguet, D. La(s)t but not least. Nat. Immunol. 12, 592–593 (2011).

    CAS  PubMed  Google Scholar 

  69. Balagopalan, L., Barr, V.A., Kortum, R.L., Park, A.K. & Samelson, L.E. Cutting edge: cell surface linker for activation of T cells is recruited to microclusters and is active in signaling. J. Immunol. 190, 3849–3853 (2013).

    CAS  PubMed  Google Scholar 

  70. Soares, H. et al. Regulated vesicle fusion generates signaling nanoterritories that control T cell activation at the immunological synapse. J. Exp. Med. 210, 2415–2433 (2013).Key paper suggesting that intracellular vesicles fuse with the plasma membrane beyond the IS to generate signaling 'nanoterritories'.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Lillemeier, B.F. et al. TCR and Lat are expressed on separate protein islands on T cell membranes and concatenate during activation. Nat. Immunol. 11, 90–96 (2010).

    CAS  PubMed  Google Scholar 

  72. Choquet, D. & Triller, A. The dynamic synapse. Neuron 80, 691–703 (2013).

    CAS  PubMed  Google Scholar 

  73. Vardhana, S., Choudhuri, K., Varma, R. & Dustin, M.L. Essential role of ubiquitin and TSG101 protein in formation and function of the central supramolecular activation cluster. Immunity 32, 531–540 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Lasserre, R. et al. Release of serine/threonine-phosphorylated adaptors from signaling microclusters down-regulates T cell activation. J. Cell Biol. 195, 839–853 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Choudhuri, K. et al. Polarized release of T-cell-receptor-enriched microvesicles at the immunological synapse. Nature 507, 118–123 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Feinerman, O., Veiga, J., Dorfman, J.R., Germain, R.N. & Altan-Bonnet, G. Variability and robustness in T cell activation from regulated heterogeneity in protein levels. Science 321, 1081–1084 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Toettcher, J.E., Weiner, O.D. & Lim, W.A. Using optogenetics to interrogate the dynamic control of signal transmission by the Ras/Erk module. Cell 155, 1422–1434 (2013).Key paper demonstrating the power of using cellular optogenetics to delineate a complex signal-transduction network.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Nakakuki, T. et al. Ligand-specific c-Fos expression emerges from the spatiotemporal control of ErbB network dynamics. Cell 141, 884–896 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Breart, B., Lemaitre, F., Celli, S. & Bousso, P. Two-photon imaging of intratumoral CD8+ T cell cytotoxic activity during adoptive T cell therapy in mice. J. Clin. Invest. 118, 1390–1397 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Soudja, S.M., Ruiz, A.L., Marie, J.C. & Lauvau, G. Inflammatory monocytes activate memory CD8+ T and innate NK lymphocytes independent of cognate antigen during microbial pathogen invasion. Immunity 37, 549–562 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Acuto, O., Di Bartolo, V. & Michel, F. Tailoring T-cell receptor signals by proximal negative feedback mechanisms. Nat. Rev. Immunol. 8, 699–712 (2008).

    CAS  PubMed  Google Scholar 

  82. Malissen, B. An evolutionary and structural perspective on T cell antigen receptor function. Immunol. Rev. 191, 7–27 (2003).

    CAS  PubMed  Google Scholar 

  83. Pauker, M.H., Reicher, B., Fried, S., Perl, O. & Barda-Saad, M. Functional cooperation between the proteins Nck and ADAP is fundamental for actin reorganization. Mol. Cell. Biol. 31, 2653–2666 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Ophir, M.J., Liu, B.C. & Bunnell, S.C. The N terminus of SKAP55 enables T cell adhesion to TCR and integrin ligands via distinct mechanisms. J. Cell Biol. 203, 1021–1041 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Balagopalan, L., Coussens, N.P., Sherman, E., Samelson, L.E. & Sommers, C.L. The LAT story: a tale of cooperativity, coordination, and choreography. Cold Spring Harb. Perspect. Biol. 2, a005512 (2010).

    PubMed  PubMed Central  Google Scholar 

  86. Gomez, T.S. et al. Dynamin 2 regulates T cell activation by controlling actin polymerization at the immunological synapse. Nat. Immunol. 6, 261–270 (2005).

    CAS  PubMed  Google Scholar 

  87. Jun, J.E., Rubio, I. & Roose, J.P. Regulation of Ras exchange factors and cellular localization of Ras activation by lipid messengers in T cells. Front Immunol 4, 239 (2013).

    PubMed  PubMed Central  Google Scholar 

  88. Le Floc'h, A. et al. Annular PIP3 accumulation controls actin architecture and modulates cytotoxicity at the immunological synapse. J. Exp. Med. 210, 2721–2737 (2013).

    PubMed  PubMed Central  Google Scholar 

  89. Shui, J.W. et al. Hematopoietic progenitor kinase 1 negatively regulates T cell receptor signaling and T cell-mediated immune responses. Nat. Immunol. 8, 84–91 (2007).

    CAS  PubMed  Google Scholar 

  90. Di Bartolo, V. et al. A novel pathway down-modulating T cell activation involves HPK-1-dependent recruitment of 14–3-3 proteins on SLP-76. J. Exp. Med. 204, 681–691 (2007).

    CAS  PubMed  Google Scholar 

  91. San Luis, B., Sondgeroth, B., Nassar, N. & Carpino, N. Sts-2 is a phosphatase that negatively regulates ζ-associated protein (ZAP)-70 and T cell receptor signaling pathways. J. Biol. Chem. 286, 15943–15954 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Balagopalan, L. et al. Enhanced T-cell signaling in cells bearing linker for activation of T-cell (LAT) molecules resistant to ubiquitylation. Proc. Natl. Acad. Sci. USA 108, 2885–2890 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Fu, G. et al. Themis sets the signal threshold for positive and negative selection in T-cell development. Nature 504, 441–445 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Paster, W. et al. GRB2-mediated recruitment of THEMIS to LAT is essential for thymocyte development. J. Immunol. 190, 3749–3756 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Lesourne, R. et al. Themis, a T cell-specific protein important for late thymocyte development. Nat. Immunol. 10, 840–847 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Dong, S. et al. T cell receptor for antigen induces linker for activation of T cell-dependent activation of a negative signaling complex involving Dok-2, SHIP-1, and Grb-2. J. Exp. Med. 203, 2509–2518 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Yasuda, T. et al. Dok-1 and Dok-2 are negative regulators of T cell receptor signaling. Int. Immunol. 19, 487–495 (2007).

    CAS  PubMed  Google Scholar 

  98. Schoenborn, J.R., Tan, Y.X., Zhang, C., Shokat, K.M. & Weiss, A. Feedback circuits monitor and adjust basal Lck-dependent events in T cell receptor signaling. Sci. Signal. 4, ra59 (2011).

    PubMed  PubMed Central  Google Scholar 

  99. Coussens, N.P. et al. Multipoint binding of the SLP-76 SH2 domain to ADAP is critical for oligomerization of SLP-76 signaling complexes in stimulated T cells. Mol. Cell. Biol. 33, 4140–4151 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Bunnell, S.C. et al. T cell receptor ligation induces the formation of dynamically regulated signaling assemblies. J. Cell Biol. 158, 1263–1275 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Douglass, A.D. & Vale, R.D. Single-molecule microscopy reveals plasma membrane microdomains created by protein-protein networks that exclude or trap signaling molecules in T cells. Cell 121, 937–950 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Kleiman, L.B., Maiwald, T., Conzelmann, H., Lauffenburger, D.A. & Sorger, P.K. Rapid phospho-turnover by receptor tyrosine kinases impacts downstream signaling and drug binding. Mol. Cell 43, 723–737 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Yokosuka, T. et al. Spatiotemporal regulation of T cell costimulation by TCR-CD28 microclusters and protein kinase C theta translocation. Immunity 29, 589–601 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Dustin, M.L. The cellular context of T cell signaling. Immunity 30, 482–492 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This paper is dedicated to the memory of François Kourilsky. We thank R. Germain and P. Bongrand for discussions. Supported by the Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Aix-Marseille Université, French National Infrastructure for Mouse Phenogenomics (PHENOMIN), Agence Nationale de Recherche (Basilic project to M.M.) and European Research Council (“Integrate” grant to B.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Malissen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malissen, B., Grégoire, C., Malissen, M. et al. Integrative biology of T cell activation. Nat Immunol 15, 790–797 (2014). https://doi.org/10.1038/ni.2959

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2959

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing