Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Post-transcriptional coordination of immunological responses by RNA-binding proteins

Abstract

Immunological reactions are propelled by ever-changing signals that alter the translational ability of the RNA in the cells involved. Such alterations are considered to be consequential modifications in the transcriptomic decoding of the genetic blueprint. The identification of RNA-binding protein (RBP) assemblies engaged in the coordinative regulation of state-specific RNAs indicates alternative and exclusive means for determining the activation, plasticity and tolerance of cells of the immune system. Here we review current knowledge about RBP-regulated post-transcriptional events involved in the reactivity of cells of the immune system and the importance of their alteration during chronic inflammatory pathology and autoimmunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Immune system–related PTR events.
Figure 2: Paradigms of RNPs that underlie changes in innate immune system–activation programs.
Figure 3: Various RNPs control the maturation, egress, activation and tolerance of T cells.

Similar content being viewed by others

References

  1. Castello, A. et al. Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell 149, 1393–1406 (2012).

    CAS  PubMed  Google Scholar 

  2. Lunde, B.M., Moore, C. & Varani, G. RNA-binding proteins: modular design for efficient function. Nat. Rev. Mol. Cell Biol. 8, 479–490 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Glisovic, T., Bachorik, J.L., Yong, J. & Dreyfuss, G. RNA-binding proteins and post-transcriptional gene regulation. FEBS Lett. 582, 1977–1986 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. König, J., Zarnack, K., Luscombe, N.M. & Ule, J. Protein-RNA interactions: new genomic technologies and perspectives. Nat. Rev. Genet. 13, 77–83 (2012).

    PubMed  Google Scholar 

  5. Keene, J.D. RNA regulons: coordination of post-transcriptional events. Nat. Rev. Genet. 8, 533–543 (2007).

    CAS  PubMed  Google Scholar 

  6. Bhatt, D.M. et al. Transcript dynamics of proinflammatory genes revealed by sequence analysis of subcellular RNA fractions. Cell 20, 279–290 (2012).This article and ref. 9 indicate that the expression of inflammatory molecules is conveyed similarly by transcriptomic machinery and splicing machinery.

    Google Scholar 

  7. Bjur, E. et al. Distinct translational control in CD4+ T cell subsets. PLoS Genet. 9, e1003494 (2013).This study demonstrates differences in the engagement of translation in various T cell subsets.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Hao, S. & Baltimore, D. The stability of mRNA influences the temporal order of the induction of genes encoding inflammatory molecules. Nat. Immunol. 10, 281–288 (2009).This systems-biology approach confirms the involvement of ARE-mediated events in the control of inflammation.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Hao, S. & Baltimore, D. RNA splicing regulates the temporal order of TNF-induced gene expression. Proc. Natl. Acad. Sci. USA 110, 11934–11939 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang, I.X. et al. ADAR regulates RNA editing, transcript stability, and gene expression. Cell Rep. 5, 849–860 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Yoon, O.K., Hsu, T.Y., Im, J.H. & Brem, R.B. Genetics and regulatory impact of alternative polyadenylation in human B-lymphoblastoid cells. PLoS Genet. 8, e1002882 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kornblihtt, A.R. et al. Alternative splicing: a pivotal step between eukaryotic transcription and translation. Nat. Rev. Mol. Cell Biol. 14, 153–165 (2013).

    CAS  PubMed  Google Scholar 

  13. Cooper, T.A., Wan, L. & Dreyfuss, G. RNA and disease. Cell 20, 777–793 (2009).

    Google Scholar 

  14. Han, S.P., Tang, Y.H. & Smith, R. Functional diversity of the hnRNPs: past, present and perspectives. Biochem. J. 430, 379–392 (2010).

    CAS  PubMed  Google Scholar 

  15. Schoenberg, D.R. & Maquat, L.E. Regulation of cytoplasmic mRNA decay. Nat. Rev. Genet. 13, 246–259 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Fukaya, T. & Tomari, Y. MicroRNAs mediate gene silencing via multiple different pathways in Drosophila. Mol. Cell 48, 825–836 (2012).

    CAS  PubMed  Google Scholar 

  17. González-Terán, B. et al. Eukaryotic elongation factor 2 controls TNF-α translation in LPS-induced hepatitis. J. Clin. Invest. 123, 164–178 (2013).

    PubMed  Google Scholar 

  18. Hay, N. & Sonenberg, N. Upstream and downstream of mTOR. Genes Dev. 18, 1926–1945 (2004).

    CAS  PubMed  Google Scholar 

  19. Anderson, P. & Kedersha, N. RNA granules: post-transcriptional and epigenetic modulators of gene expression. Nat. Rev. Mol. Cell Biol. 10, 430–436 (2009).

    CAS  PubMed  Google Scholar 

  20. Mosser, D.M. & Edwards, J.P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8, 958–969 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Fukaya, T. & Tomari, Y. MicroRNAs mediate gene silencing via multiple different pathways in Drosophila. Mol. Cell 48, 825–836 (2012).

    CAS  PubMed  Google Scholar 

  22. Schroder, K. & Tschopp, J. The inflammasomes. Cell 19, 821–832 (2010).

    Google Scholar 

  23. Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 19, 805–820 (2010).

    Google Scholar 

  24. Burns, K. et al. Inhibition of interleukin 1 receptor/Toll-like receptor signaling through the alternatively spliced, short form of MyD88 is due to its failure to recruit IRAK-4. J. Exp. Med. 197, 263–268 (2003).

    PubMed  PubMed Central  Google Scholar 

  25. De Arras, L. & Alper, S. Limiting of the innate immune response by SF3A-dependent control of MyD88 alternative mRNA splicing. PLoS Genet. 9, e1003855 (2013).

    PubMed  PubMed Central  Google Scholar 

  26. Sarkar, S. et al. RNA-binding protein AUF1 regulates lipopolysaccharide-induced IL10 expression by activating IκB kinase complex in monocytes. Mol. Cell. Biol. 31, 602–615 (2011).

    CAS  PubMed  Google Scholar 

  27. Qiang, X. et al. Cold-inducible RNA-binding protein (CIRP) triggers inflammatory responses in hemorrhagic shock and sepsis. Nat. Med. 19, 1489–1495 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Rajayer, S.R. et al. Cold-inducible RNA-binding protein is an important mediator of alcohol-induced brain inflammation. PLoS ONE 8, e79430 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Mitoma, H. et al. The DHX33 RNA helicase senses cytosolic RNA and activates the NLRP3 inflammasome. Immunity 39, 123–135 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Nakayama, Y. et al. Role of PKR and Type I IFNs in viral control during primary and secondary infection. PLoS Pathog. 6, e1000966 (2010).

    PubMed  PubMed Central  Google Scholar 

  31. George, C.X. & Samuel, C.E. Host response to polyomavirus infection is modulated by RNA adenosine deaminase ADAR1 but not by ADAR2. J. Virol. 85, 8338–8347 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Lloyd, R.E. Regulation of stress granules and P-bodies during RNA virus infection. Wiley. Interdiscip. Rev. RNA. 4, 317–331 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Barnhart, M.D., Moon, S.L., Emch, A.W., Wilusz, C.J. & Wilusz, J. Changes in cellular mRNA stability, splicing, and polyadenylation through HuR protein sequestration by a cytoplasmic RNA virus. Cell Rep. 5, 909–917 (2013).

    CAS  PubMed  Google Scholar 

  34. Iwasaki, H. et al. The IκB kinase complex regulates the stability of cytokine-encoding mRNA induced by TLR-IL-1R by controlling degradation of regnase-1. Nat. Immunol. 12, 1167–1175 (2011).This study presents the first distinct connection of the NF-kB pathway to mRNA decay by regnase-1.

    CAS  PubMed  Google Scholar 

  35. Masuda, K. et al. Arid5a controls IL-6 mRNA stability, which contributes to elevation of IL-6 level in vivo. Proc. Natl. Acad. Sci. USA 110, 9409–9414 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Brooks, S.A. & Blackshear, P.J. Tristetraprolin (TTP): interactions with mRNA and proteins, and current thoughts on mechanisms of action. Biochim. Biophys. Acta 1829, 666–679 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Suzuki, K. et al. IL-4-Stat6 signaling induces tristetraprolin expression and inhibits TNF-alpha production in mast cells. J. Exp. Med. 198, 1717–1727 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Schaljo, B. et al. Tristetraprolin is required for full anti-inflammatory response of murine macrophages to IL-10. J. Immunol. 183, 1197–1206 (2009).

    CAS  PubMed  Google Scholar 

  39. Blanco, F.F., Sanduja, S., Deane, N.G., Blackshear, P.J. & Dixon, D.A. Transforming growth factor β regulates P-body formation through induction of the mRNA decay factor tristetraprolin. Mol. Cell. Biol. 34, 180–195 (2014).

    PubMed  PubMed Central  Google Scholar 

  40. Kang, J.G. et al. Zinc finger protein tristetraprolin interacts with CCL3 mRNA and regulates tissue inflammation. J. Immunol. 187, 2696–2701 (2011).

    CAS  PubMed  Google Scholar 

  41. Kratochvill, F. et al. Tristetraprolin-driven regulatory circuit controls quality and timing of mRNA decay in inflammation. Mol. Syst. Biol. 7, 560 (2011).

    PubMed  PubMed Central  Google Scholar 

  42. Molle, C. et al. Tristetraprolin regulation of interleukin 23 mRNA stability prevents a spontaneous inflammatory disease. J. Exp. Med. 210, 1675–1684 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Qiu, L.Q., Stumpo, D.J. & Blackshear, P.J. Myeloid-specific tristetraprolin deficiency in mice results in extreme lipopolysaccharide sensitivity in an otherwise minimal phenotype. J. Immunol. 188, 5150–5159 (2012).

    CAS  PubMed  Google Scholar 

  44. Taylor, G.A. et al. A pathogenetic role for TNF α in the syndrome of cachexia, arthritis, and autoimmunity resulting from tristetraprolin (TTP) deficiency. Immunity 4, 445–454 (1996).This report is the first demonstration of an ARE-BP acting as a controller of inflammatory processes.

    CAS  PubMed  Google Scholar 

  45. Leppek, K. et al. Roquin promotes constitutive mRNA decay via a conserved class of stem-loop recognition motifs. Cell Identification of CDEs as the RNA element of Roquins. 153, 869–881 (2013).

    CAS  PubMed  Google Scholar 

  46. Maruyama, T. et al. Roquin-2 promotes ubiquitin-mediated degradation of ASK1 to regulate stress responses. Sci. Signal. 7, ra8 (2014).

    PubMed  Google Scholar 

  47. Vinuesa, C.G. et al. A RING-type ubiquitin ligase family member required to repress follicular helper T cells and autoimmunity. Nature 435, 452–458 (2005).This article identifies roquin as a controller of costimulatory programs that act against systemic autoimmunity.

    CAS  PubMed  Google Scholar 

  48. Glasmacher, E. et al. Roquin binds inducible costimulator mRNA and effectors of mRNA decay to induce microRNA-independent post-transcriptional repression. Nat. Immunol. 11, 725–733 (2010).

    CAS  PubMed  Google Scholar 

  49. Pratama, A. et al. Roquin-2 shares functions with its paralog Roquin-1 in the repression of mRNAs controlling T follicular helper cells and systemic inflammation. Immunity 38, 669–680 (2013).

    CAS  PubMed  Google Scholar 

  50. Izquierdo, J.M. Heterogeneous ribonucleoprotein C displays a repressor activity mediated by T-cell intracellular antigen-1-related/like protein to modulate Fas exon 6 splicing through a mechanism involving Hu antigen R. Nucleic Acids Res. 38, 8001–8014 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Piecyk, M. et al. TIA-1 is a translational silencer that selectively regulates the expression of TNF-alpha. EMBO J. 19, 4154–4163 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Phillips, K., Kedersha, N., Shen, L., Blackshear, P.J. & Anderson, P. Arthritis suppressor genes TIA-1 and TTP dampen the expression of tumor necrosis factor α, cyclooxygenase 2, and inflammatory arthritis. Proc. Natl. Acad. Sci. USA 101, 2011–2016 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Simarro, M. et al. The translational repressor T-cell intracellular antigen-1 (TIA-1) is a key modulator of Th2 and Th17 responses driving pulmonary inflammation induced by exposure to house dust mite. Immunol. Lett. 146, 8–14 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Pont, A.R., Sadri, N., Hsiao, S.J., Smith, S. & Schneider, R.J. mRNA decay factor AUF1 maintains normal aging, telomere maintenance, and suppression of senescence by activation of telomerase transcription. Mol. Cell 47, 5–15 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. White, E.J., Brewer, G. & Wilson, G.M. Post-transcriptional control of gene expression by AUF1: mechanisms, physiological targets, and regulation. Biochim. Biophys. Acta 1829, 680–688 (2013).

    CAS  PubMed  Google Scholar 

  56. Lu, J.Y., Sadri, N. & Schneider, R.J. Endotoxic shock in AUF1 knockout mice mediated by failure to degrade proinflammatory cytokine mRNAs. Genes Dev. 20, 3174–3184 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Sadri, N. & Schneider, R.J. Auf1/Hnrnpd-deficient mice develop pruritic inflammatory skin disease. J. Invest. Dermatol. 129, 657–670 (2009).

    CAS  PubMed  Google Scholar 

  58. Lin, W.J. et al. Posttranscriptional control of type I interferon genes by KSRP in the innate immune response against viral infection. Mol. Cell. Biol. 31, 3196–3207 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Brennan, C.M. & Steitz, J.A. HuR and mRNA stability. Cell. Mol. Life Sci. 58, 266–277 (2001).

    CAS  PubMed  Google Scholar 

  60. Mukherjee, N. et al. Integrative regulatory mapping indicates that the RNA-binding protein HuR couples pre-mRNA processing and mRNA stability. Mol. Cell 43, 327–339 (2011).This article exemplifies the concomitant functions of an ARE-BP in splicing, decay and translation.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Yiakouvaki, A. et al. Myeloid cell expression of the RNA-binding protein HuR protects mice from pathologic inflammation and colorectal carcinogenesis. J. Clin. Invest. 122, 48–61 (2012).This study connects the functions of the ARE-BP HuR to the control of macrophage activation.

    CAS  PubMed  Google Scholar 

  62. Srikantan, S., Tominaga, K. & Gorospe, M. Functional interplay between RNA-binding protein HuR and microRNAs. Curr. Protein Pept. Sci. 13, 372–379 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Barker, A. et al. Sequence requirements for RNA binding by HuR and AUF1. J. Biochem. 151, 423–437 (2012).

    CAS  PubMed  Google Scholar 

  64. Zhang, J. et al. Macrophage β2 integrin-mediated, HuR-dependent stabilization of angiogenic factor-encoding mRNAs in inflammatory angiogenesis. Am. J. Pathol. 180, 1751–1760 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Katsanou, V. et al. HuR as a negative posttranscriptional modulator in inflammation. Mol. Cell 19, 777–789 (2005).This article demonstrates the interplay between presumed mRNA activators and mRNA suppressors toward inflammation control during modeled inflammatory reactions.

    CAS  PubMed  Google Scholar 

  66. Chang, S.H. et al. Antagonistic function of the RNA-binding protein HuR and miR-200b in post-transcriptional regulation of vascular endothelial growth factor-A expression and angiogenesis. J. Biol. Chem. 288, 4908–4921 (2013).

    CAS  PubMed  Google Scholar 

  67. Mukhopadhyay, R., Jia, J., Arif, A., Ray, P.S. & Fox, P.L. The GAIT system: a gatekeeper of inflammatory gene expression. Trends Biochem. Sci. 34, 324–331 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Arif, A., Chatterjee, P., Moodt, R.A. & Fox, P.L. Heterotrimeric GAIT complex drives transcript-selective translation inhibition in murine macrophages. Mol. Cell. Biol. 32, 5046–5055 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Poddar, D. et al. An extraribosomal function of ribosomal protein L13a in macrophages resolves inflammation. J. Immunol. 190, 3600–3612 (2013).

    CAS  PubMed  Google Scholar 

  70. Weichhart, T. et al. The TSC-mTOR signaling pathway regulates the innate inflammatory response. Immunity 29, 565–577 (2008).This article and ref. 71 demonstrate the rheostatic functions of mTOR in inflammation and infection.

    CAS  PubMed  Google Scholar 

  71. Ivanov, S.S. & Roy, C.R. Pathogen signatures activate a ubiquitination pathway that modulates the function of the metabolic checkpoint kinase mTOR. Nat. Immunol. 14, 1219–1228 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Arranz, A. et al. Akt1 and Akt2 protein kinases differentially contribute to macrophage polarization. Proc. Natl. Acad. Sci. USA 109, 9517–9522 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Byles, V. et al. The TSC-mTOR pathway regulates macrophage polarization. Nat. Commun. 4, 2834 (2013).

    PubMed  Google Scholar 

  74. Wang, W. et al. AMP-activated kinase regulates cytoplasmic HuR. Mol. Cell. Biol. 22, 3425–3436 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Hahn-Windgassen, A. et al. Akt activates the mammalian target of rapamycin by regulating cellular ATP level and AMPK activity. J. Biol. Chem. 280, 32081–32089 (2005).

    CAS  PubMed  Google Scholar 

  76. Damgaard, C.K. & Lykke-Andersen, J. Translational coregulation of 5′TOP mRNAs by TIA-1 and TIAR. Genes Dev. 25, 2057–2068 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Hodson, D.J. et al. Deletion of the RNA-binding proteins ZFP36L1 and ZFP36L2 leads to perturbed thymic development and T lymphoblastic leukemia. Nat. Immunol. 11, 717–724 (2010).This study demonstrates that AMD is active during T cell maturation and is a determinant of T cell acute lymphoblastic leukemia.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Benjamin, D., Schmidlin, M., Min, L., Gross, B. & Moroni, C. BRF1 protein turnover and mRNA decay activity are regulated by protein kinase B at the same phosphorylation sites. Mol. Cell. Biol. 26, 9497–9507 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Bellavia, D. et al. Notch3 and the Notch3-upregulated RNA-binding protein HuD regulate Ikaros alternative splicing. EMBO J. 26, 1670–1680 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Frischmeyer-Guerrerio, P.A. et al. Perturbation of thymocyte development in nonsense-mediated decay (NMD)-deficient mice. Proc. Natl. Acad. Sci. USA 108, 10638–10643 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Weischenfeldt, J. et al. NMD is essential for hematopoietic stem and progenitor cells and for eliminating by-products of programmed DNA rearrangements. Genes Dev. 22, 1381–1396 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Sulic, S. et al. Inactivation of S6 ribosomal protein gene in T lymphocytes activates a p53-dependent checkpoint response. Genes Dev. 19, 3070–3082 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Anderson, S.J. et al. Ablation of ribosomal protein L22 selectively impairs alphabeta T cell development by activation of a p53-dependent checkpoint. Immunity 26, 759–772 (2007).

    CAS  PubMed  Google Scholar 

  84. Mazan-Mamczarz, K. et al. ATM regulates a DNA damage response posttranscriptional RNA operon in lymphocytes. Blood 117, 2441–2450 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Papadaki, O. et al. Control of thymic T cell maturation, deletion and egress by the RNA-binding protein HuR. J. Immunol. 182, 6779–6788 (2009).

    CAS  PubMed  Google Scholar 

  86. Mallory, M.J. et al. Signal- and development-dependent alternative splicing of LEF1 in T cells is controlled by CELF2. Mol. Cell. Biol. 31, 2184–2195 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Moulton, V.R., Kyttaris, V.C., Juang, Y.T., Chowdhury, B. & Tsokos, G.C. The RNA-stabilizing protein HuR regulates the expression of ζ chain of the human T cell receptor-associated CD3 complex. J. Biol. Chem. 283, 20037–20044 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Moulton, V.R., Grammatikos, A.P., Fitzgerald, L.M. & Tsokos, G.C. Splicing factor SF2/ASF rescues IL-2 production in T cells from systemic lupus erythematosus patients by activating IL-2 transcription. Proc. Natl. Acad. Sci. USA 110, 1845–1850 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Wang, H.Y., Xu, X., Ding, J.H., Bermingham, J.R. Jr. & Fu, X.D. SC35 plays a role in T cell development and alternative splicing of CD45. Mol. Cell 7, 331–342 (2001).

    CAS  PubMed  Google Scholar 

  90. Gaudreau, M.C., Heyd, F., Bastien, R., Wilhelm, B. & Moroy, T. Alternative splicing controlled by heterogeneous nuclear ribonucleoprotein L regulates development, proliferation, and migration of thymic pre-T cells. J. Immunol. 188, 5377–5388 (2012).

    CAS  PubMed  Google Scholar 

  91. Mukherjee, N., Lager, P.J., Friedersdorf, M.B., Thompson, M.A. & Keene, J.D. Coordinated posttranscriptional mRNA population dynamics during T-cell activation. Mol. Syst. Biol. 5, 288 (2009).

    PubMed  PubMed Central  Google Scholar 

  92. Fedeli, M. et al. Dicer-dependent microRNA pathway controls invariant NKT cell development. J. Immunol. 183, 2506–2512 (2009).

    CAS  PubMed  Google Scholar 

  93. Liston, A., Lu, L.F., O'Carroll, D., Tarakhovsky, A. & Rudensky, A.Y. Dicer-dependent microRNA pathway safeguards regulatory T cell function. J. Exp. Med. 205, 1993–2004 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Heyd, F. & Lynch, K.W. Phosphorylation-dependent regulation of PSF by GSK3 controls CD45 alternative splicing. Mol. Cell 40, 126–137 (2010).This study provides a mechanistic model of how alternative splicing occurs in T cells to 'instruct' activation and memory responses.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Wu, Z. et al. Memory T cell RNA rearrangement programmed by heterogeneous nuclear ribonucleoprotein hnRNPLL. Immunity 19, 863–875 (2008).This study provides an example of subset discrimination by PTR.

    Google Scholar 

  96. Uehata, T. et al. Malt1-induced cleavage of regnase-1 in CD4+ helper T cells regulates immune activation. Cell 153, 1036–1049 (2013).

    CAS  PubMed  Google Scholar 

  97. Vogel, K.U. et al. Roquin paralogs 1 and 2 redundantly repress the Icos and Ox40 costimulator mRNAs and control follicular helper T cell differentiation. Immunity 38, 655–668 (2013).

    CAS  PubMed  Google Scholar 

  98. Vavassori, S. & Covey, L.R. Post-transcriptional regulation in lymphocytes: the case of CD154. RNA Biol. 6, 259–265 (2009).

    CAS  PubMed  Google Scholar 

  99. Li, M. et al. MCPIP1 down-regulates IL-2 expression through an ARE-independent pathway. PLoS ONE 7, e49841 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Shi, L., Godfrey, W.R., Lin, J., Zhao, G. & Kao, P.N. NF90 regulates inducible IL-2 gene expression in T cells. J. Exp. Med. 204, 971–977 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Chen, J. et al. Posttranscriptional gene regulation of IL-17 by the RNA-binding protein HuR is required for initiation of experimental autoimmune encephalomyelitis. J. Immunol. 191, 5441–5450 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Corrionero, A., Raker, V.A., Izquierdo, J.M. & Valcarcel, J. Strict 3′ splice site sequence requirements for U2 snRNP recruitment after U2AF binding underlie a genetic defect leading to autoimmune disease. RNA 17, 401–411 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Oh, H. et al. hnRNP A1 contacts exon 5 to promote exon 6 inclusion of apoptotic Fas gene. Apoptosis 18, 825–835 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. von Roretz, C. et al. Apoptotic-induced cleavage shifts HuR from being a promoter of survival to an activator of caspase-mediated apoptosis. Cell Death Differ. 20, 154–168 (2013).

    CAS  PubMed  Google Scholar 

  105. Izquierdo, J.M. Fas splicing regulation during early apoptosis is linked to caspase-mediated cleavage of U2AF65. Mol. Biol. Cell 19, 3299–3307 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Zheng, Y., Delgoffe, G.M., Meyer, C.F., Chan, W. & Powell, J.D. Anergic T cells are metabolically anergic. J. Immunol. 183, 6095–6101 (2009).

    CAS  PubMed  Google Scholar 

  107. Villarino, A.V. et al. Posttranscriptional silencing of effector cytokine mRNA underlies the anergic phenotype of self-reactive T cells. Immunity 34, 50–60 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Meisner, N.C. et al. Identification and mechanistic characterization of low-molecular-weight inhibitors for HuR. Nat. Chem. Biol. 3, 508–515 (2007).

    CAS  PubMed  Google Scholar 

  109. Filipovska, A. & Rackham, O. Designer RNA-binding proteins: New tools for manipulating the transcriptome. RNA Biol. 8, 978–983 (2011).

    CAS  PubMed  Google Scholar 

  110. Gruber, A.R., Fallmann, J., Kratochvill, F., Kovarik, P. & Hofacker, I.L. AREsite: a database for the comprehensive investigation of AU-rich elements. Nucleic Acids Res. 39, D66–D69 (2011).

    CAS  PubMed  Google Scholar 

  111. Bakheet, T., Williams, B.R. & Khabar, K.S. ARED 3.0: the large and diverse AU-rich transcriptome. Nucleic Acids Res. 34, D111–D114 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank G. Panayotou, E. Remboutsika, L. Kioussi and N. Lourou for comments. Supported by the Hellenic General Secretariat for Research and Technology ARISTEIA I program (1096-PRECISE) and the Seventh Framework Programme of the European Union (PEOPLE-2010-IEF 274837, HEALTH-F2-2008-223404-MASTERSWITCH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitris L Kontoyiannis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kafasla, P., Skliris, A. & Kontoyiannis, D. Post-transcriptional coordination of immunological responses by RNA-binding proteins. Nat Immunol 15, 492–502 (2014). https://doi.org/10.1038/ni.2884

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2884

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing