Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The enemy within: endogenous retroelements and autoimmune disease

Abstract

Inappropriate or chronic detection of self nucleic acids by the innate immune system underlies many human autoimmune diseases. We discuss here an unexpected source of endogenous immunostimulatory nucleic acids: the reverse-transcribed cDNA of endogenous retroelements. The interplay between innate immune sensing and clearance of retroelement cDNA has important implications for the understanding of immune responses to infectious retroviruses such as human immunodeficiency virus (HIV). Furthermore, the detection of cDNA by the innate immune system reveals an evolutionary tradeoff: selection for a vigorous, sensitive response to infectious retroviruses may predispose the inappropriate detection of endogenous retroelements. We propose that this tradeoff has placed unique constraints on the sensitivity of the DNA-activated antiviral response, with implications for the interactions of DNA viruses and retroviruses with their hosts. Finally, we discuss how better understanding of the intersection of retroelement biology and innate immunity can guide the way to novel therapies for specific autoimmune diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Types of endogenous retroelements in the mammalian genome.
Figure 2: AGS-related enzymes restrict the replication of endogenous retroelements and exogenous retroviruses.
Figure 3: Model by which coevolution with endogenous retroelements shapes the DNA-sensing pathway.
Figure 4: Therapeutic strategies for mitigating cell-intrinsic activation of the ISD pathway.

Similar content being viewed by others

References

  1. Barbalat, R., Ewald, S.E., Mouchess, M.L. & Barton, G.M. Nucleic acid recognition by the innate immune system. Annu. Rev. Immunol. 29, 185–214 (2011).

    CAS  PubMed  Google Scholar 

  2. Yoneyama, M. et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat. Immunol. 5, 730–737 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Ishikawa, H. & Barber, G.N. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455, 674–678 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Burdette, D. L. et al. STING is a direct innate immune sensor of cyclic di-GMP. Nature 478, 515–518 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Muruve, D.A. et al. The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response. Nature 452, 103–107 (2008).

    CAS  PubMed  Google Scholar 

  6. Hornung, V. et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458, 514–518 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Fernandes-Alnemri, T., Yu, J.W., Datta, P., Wu, J. & Alnemri, E.S. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458, 509–513 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Bürckstümmer, T. et al. An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat. Immunol. 10, 266–272 (2009).

    PubMed  Google Scholar 

  9. Xiao, T.S. & Fitzgerald, K.A. The cGAS-STING pathway for DNA sensing. Mol. Cell 51, 135–139 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Goubau, D., Deddouche, S. & Reis, E.S.C. Cytosolic sensing of viruses. Immunity 38, 855–869 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Leadbetter, E.A. et al. Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 416, 603–607 (2002).

    CAS  PubMed  Google Scholar 

  12. Barrat, F.J. et al. Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus. J. Exp. Med. 202, 1131–1139 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Christensen, S.R. et al. Toll-like receptor 7 and TLR9 dictate autoantibody specificity and have opposing inflammatory and regulatory roles in a murine model of lupus. Immunity 25, 417–428 (2006).

    CAS  PubMed  Google Scholar 

  14. Lander, E.S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    CAS  PubMed  Google Scholar 

  15. Goodier, J.L. & Kazazian, H.H. Jr. Retrotransposons revisited: the restraint and rehabilitation of parasites. Cell 135, 23–35 (2008).

    CAS  PubMed  Google Scholar 

  16. Levin, H.L. & Moran, J.V. Dynamic interactions between transposable elements and their hosts. Nat. Rev. Genet. 12, 615–627 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hughes, J.F. & Coffin, J.M. Human endogenous retrovirus K solo-LTR formation and insertional polymorphisms: implications for human and viral evolution. Proc. Natl. Acad. Sci. USA 101, 1668–1672 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Penzkofer, T., Dandekar, T. & Zemojtel, T. L1Base: from functional annotation to prediction of active LINE-1 elements. Nucleic Acids Res. 33, D498–D500 (2005).

    CAS  PubMed  Google Scholar 

  19. Dewannieux, M., Esnault, C. & Heidmann, T. LINE-mediated retrotransposition of marked Alu sequences. Nat. Genet. 35, 41–48 (2003).

    CAS  PubMed  Google Scholar 

  20. Huang, C.R. et al. Mobile interspersed repeats are major structural variants in the human genome. Cell 141, 1171–1182 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Beck, C.R. et al. LINE-1 retrotransposition activity in human genomes. Cell 141, 1159–1170 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Iskow, R.C. et al. Natural mutagenesis of human genomes by endogenous retrotransposons. Cell 141, 1253–1261 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Ewing, A.D. & Kazazian, H.H. Jr. High-throughput sequencing reveals extensive variation in human-specific L1 content in individual human genomes. Genome Res. 20, 1262–1270 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Muotri, A.R. et al. Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition. Nature 435, 903–910 (2005).

    CAS  PubMed  Google Scholar 

  25. Burns, K.H. & Boeke, J.D. Human transposon tectonics. Cell 149, 740–752 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Stetson, D.B. & Medzhitov, R. Recognition of cytosolic DNA activates an IRF3-dependent innate immune response. Immunity 24, 93–103 (2006).

    CAS  PubMed  Google Scholar 

  27. Ishii, K.J. et al. A Toll-like receptor-independent antiviral response induced by double-stranded B-form DNA. Nat. Immunol. 7, 40–48 (2006).

    CAS  PubMed  Google Scholar 

  28. Lindahl, T., Gally, J.A. & Edelman, G.M. Properties of deoxyribonuclease 3 from mammalian tissues. J. Biol. Chem. 244, 5014–5019 (1969).

    CAS  PubMed  Google Scholar 

  29. Crow, Y.J. et al. Mutations in the gene encoding the 3´-5´ DNA exonuclease TREX1 cause Aicardi-Goutieres syndrome at the AGS1 locus. Nat. Genet. 38, 917–920 (2006).

    CAS  PubMed  Google Scholar 

  30. Aicardi, J. & Goutieres, F. A progressive familial encephalopathy in infancy with calcifications of the basal ganglia and chronic cerebrospinal fluid lymphocytosis. Ann. Neurol. 15, 49–54 (1984).

    CAS  PubMed  Google Scholar 

  31. Lebon, P. et al. Intrathecal synthesis of interferon-α in infants with progressive familial encephalopathy. J. Neurol. Sci. 84, 201–208 (1988).

    CAS  PubMed  Google Scholar 

  32. Crow, Y.J. et al. Mutations in genes encoding ribonuclease H2 subunits cause Aicardi-Goutieres syndrome and mimic congenital viral brain infection. Nat. Genet. 38, 910–916 (2006).

    CAS  PubMed  Google Scholar 

  33. Rice, G.I. et al. Mutations involved in Aicardi-Goutieres syndrome implicate SAMHD1 as regulator of the innate immune response. Nat. Genet. 41, 829–832 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Rice, G.I. et al. Mutations in ADAR1 cause Aicardi-Goutieres syndrome associated with a type I interferon signature. Nat. Genet. 44, 1243–1248 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Rice, G. et al. Heterozygous mutations in TREX1 cause familial chilblain lupus and dominant Aicardi-Goutieres syndrome. Am. J. Hum. Genet. 80, 811–815 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lee-Kirsch, M.A. et al. A mutation in TREX1 that impairs susceptibility to granzyme A-mediated cell death underlies familial chilblain lupus. J. Mol. Med. 85, 531–537 (2007).

    CAS  PubMed  Google Scholar 

  37. Lee-Kirsch, M.A. et al. Mutations in the gene encoding the 3´-5´ DNA exonuclease TREX1 are associated with systemic lupus erythematosus. Nat. Genet. 39, 1065–1067 (2007).

    CAS  PubMed  Google Scholar 

  38. Namjou, B. et al. Evaluation of the TREX1 gene in a large multi-ancestral lupus cohort. Genes Immun. 12, 270–279 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Harley, I.T., Kaufman, K.M., Langefeld, C.D., Harley, J.B. & Kelly, J.A. Genetic susceptibility to SLE: new insights from fine mapping and genome-wide association studies. Nat. Rev. Genet. 10, 285–290 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Stetson, D.B., Ko, J.S., Heidmann, T. & Medzhitov, R. Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell 134, 587–598 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Gall, A. et al. Autoimmunity initiates in nonhematopoietic cells and progresses via lymphocytes in an interferon-dependent autoimmune disease. Immunity 36, 120–131 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Medzhitov, R. & Littman, D. HIV immunology needs a new direction. Nature 455, 591 (2008).

    CAS  PubMed  Google Scholar 

  43. Yan, N., Regalado-Magdos, A.D., Stiggelbout, B., Lee-Kirsch, M.A. & Lieberman, J. The cytosolic exonuclease TREX1 inhibits the innate immune response to human immunodeficiency virus type 1. Nat. Immunol. 11, 1005–1013 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Manel, N. et al. A cryptic sensor for HIV-1 activates antiviral innate immunity in dendritic cells. Nature 467, 214–217 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Goujon, C. et al. With a little help from a friend: increasing HIV transduction of monocyte-derived dendritic cells with virion-like particles of SIV(MAC). Gene Ther. 13, 991–994 (2006).

    CAS  PubMed  Google Scholar 

  46. Doitsh, G. et al. Abortive HIV infection mediates CD4 T cell depletion and inflammation in human lymphoid tissue. Cell 143, 789–801 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Laguette, N. et al. SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 474, 654–657 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Hrecka, K. et al. Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein. Nature 474, 658–661 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Goldstone, D.C. et al. HIV-1 restriction factor SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase. Nature 480, 379–382 (2011).

    CAS  PubMed  Google Scholar 

  50. Powell, R.D., Holland, P.J., Hollis, T. & Perrino, F.W. Aicardi-Goutieres syndrome gene and HIV-1 restriction factor SAMHD1 is a dGTP-regulated deoxynucleotide triphosphohydrolase. J. Biol. Chem. 286, 43596–43600 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Descours, B. et al. SAMHD1 restricts HIV-1 reverse transcription in quiescent CD4+ T-cells. Retrovirology 9, 87 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Unterholzner, L. The interferon response to intracellular DNA: why so many receptors? Immunobiology 218, 1312–1321 (2013).

    CAS  PubMed  Google Scholar 

  53. Sun, L., Wu, J., Du, F., Chen, X. & Chen, Z.J. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339, 786–791 (2013).

    CAS  PubMed  Google Scholar 

  54. Wu, J. et al. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339, 826–830 (2013).

    CAS  PubMed  Google Scholar 

  55. Gao, P. et al. Cyclic [G(2',5')pA(3',5')p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase. Cell 153, 1094–1107 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Ablasser, A. et al. cGAS produces a 2'-5'-linked cyclic dinucleotide second messenger that activates STING. Nature 498, 380–384 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Diner, E. J. et al. The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING. Cell Rep. 3, 1355–1361 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Civril, F. et al. Structural mechanism of cytosolic DNA sensing by cGAS. Nature 498, 332–337 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Kranzusch, P. J., Lee, A. S., Berger, J. M. & Doudna, J. A. Structure of human cGAS reveals a conserved family of second-messenger enzymes in innate immunity. Cell Rep. 3, 1362–1368 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang, X. et al. The cytosolic DNA sensor cGAS forms an oligomeric complex with DNA and undergoes switch-like conformational changes in the activation loop. Cell Rep. 6, 421–430 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Li, X.D. et al. Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects. Science 341, 1390–1394 (2013).

    CAS  PubMed  Google Scholar 

  62. Gao, D. et al. Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses. Science 341, 903–906 (2013).

    CAS  PubMed  Google Scholar 

  63. Doitsh, G. et al. Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection. Nature 505, 509–514 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Monroe, K.M. et al. IFI16 DNA sensor is required for death of lymphoid CD4 T cells abortively infected with HIV. Science 343, 428–432 (2014).

    CAS  PubMed  Google Scholar 

  65. Unterholzner, L. et al. IFI16 is an innate immune sensor for intracellular DNA. Nat. Immunol. 11, 997–1004 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Jakobsen, M.R. et al. IFI16 senses DNA forms of the lentiviral replication cycle and controls HIV-1 replication. Proc. Natl. Acad. Sci. USA 110, E4571–E4580 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Manel, N. & Littman, D.R. Hiding in plain sight: how HIV evades innate immune responses. Cell 147, 271–274 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Doehle, B.P. et al. Vpu-deficient HIV strains stimulate innate immune signaling responses in target cells. J. Virol. 86, 8499–8506 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Doehle, B.P. et al. Vpu mediates depletion of interferon regulatory factor 3 during HIV infection by a lysosome-dependent mechanism. J. Virol. 86, 8367–8374 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Rasaiyaah, J. et al. HIV-1 evades innate immune recognition through specific cofactor recruitment. Nature 503, 402–405 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Lahaye, X. et al. The capsids of HIV-1 and HIV-2 determine immune detection of the viral cDNA by the innate sensor cGAS in dendritic cells. Immunity 39, 1132–1142 (2013).

    CAS  PubMed  Google Scholar 

  72. Daugherty, M.D. & Malik, H.S. Rules of engagement: molecular insights from host-virus arms races. Annu. Rev. Genet. 46, 677–700 (2012).

    CAS  PubMed  Google Scholar 

  73. Lim, E.S. et al. The ability of primate lentiviruses to degrade the monocyte restriction factor SAMHD1 preceded the birth of the viral accessory protein Vpx. Cell Host Microbe 11, 194–204 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Li, T., Chen, J. & Cristea, I.M. Human cytomegalovirus tegument protein pUL83 inhibits IFI16-mediated DNA sensing for immune evasion. Cell Host Microbe 14, 591–599 (2013).

    CAS  PubMed  Google Scholar 

  75. Lam, E., Stein, S. & Falck-Pedersen, E. Adenovirus detection by the cGAS/STING/TBK1 DNA sensing cascade. J. Virol. 88, 974–981 (2014).

    PubMed  PubMed Central  Google Scholar 

  76. Jin, T. et al. Structures of the HIN domain:DNA complexes reveal ligand binding and activation mechanisms of the AIM2 inflammasome and IFI16 receptor. Immunity 36, 561–571 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Liao, J.C. et al. Interferon-inducible protein 16: insight into the interaction with tumor suppressor p53. Structure 19, 418–429 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Nejentsev, S., Walker, N., Riches, D., Egholm, M. & Todd, J.A. Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science 324, 387–389 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Gateva, V. et al. A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus. Nat. Genet. 41, 1228–1233 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Funabiki, M. et al. Autoimmune disorders associated with gain of function of the intracellular sensor MDA5. Immunity 40, 199–212 (2014).

    CAS  PubMed  Google Scholar 

  81. Yang, Y.G., Lindahl, T. & Barnes, D.E. Trex1 exonuclease degrades ssDNA to prevent chronic checkpoint activation and autoimmune disease. Cell 131, 873–886 (2007).

    CAS  PubMed  Google Scholar 

  82. Reijns, M.A. et al. Enzymatic removal of ribonucleotides from DNA is essential for mammalian genome integrity and development. Cell 149, 1008–1022 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Hiller, B. et al. Mammalian RNase H2 removes ribonucleotides from DNA to maintain genome integrity. J. Exp. Med. 209, 1419–1426 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Kretschmer, S. et al. SAMHD1 prevents autoimmunity by maintaining genome stability. Ann. Rheum. Dis. doi:10.1136/annrheumdis-2013-204845 (20 January 2014).

  85. Clifford, R. et al. SAMHD1 is mutated recurrently in chronic lymphocytic leukemia and is involved in response to DNA damage. Blood 123, 1021–1031 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Rehwinkel, J. et al. SAMHD1-dependent retroviral control and escape in mice. EMBO J. 32, 2454–2462 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Behrendt, R. et al. Mouse SAMHD1 has antiretroviral activity and suppresses a spontaneous cell-intrinsic antiviral response. Cell Rep. 4, 689–696 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Perrino, F.W., Harvey, S., Shaban, N.M. & Hollis, T. RNaseH2 mutants that cause Aicardi-Goutieres syndrome are active nucleases. J. Mol. Med. 87, 25–30 (2009).

    CAS  PubMed  Google Scholar 

  89. Morita, M. et al. Gene-targeted mice lacking the Trex1 (DNase III) 3'→5' DNA exonuclease develop inflammatory myocarditis. Mol. Cell. Biol. 24, 6719–6727 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Rice, G. et al. Clinical and molecular phenotype of Aicardi-Goutieres syndrome. Am. J. Hum. Genet. 81, 713–725 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Rudin, C.M. & Thompson, C.B. Transcriptional activation of short interspersed elements by DNA-damaging agents. Genes Chromosom. Cancer 30, 64–71 (2001).

    CAS  PubMed  Google Scholar 

  92. Hagan, C.R., Sheffield, R.F. & Rudin, C.M. Human Alu element retrotransposition induced by genotoxic stress. Nat. Genet. 35, 219–220 (2003).

    CAS  PubMed  Google Scholar 

  93. Fitzgerald, K.A. et al. IKKe and TBK1 are essential components of the IRF3 signaling pathway. Nat. Immunol. 4, 491–496 (2003).

    CAS  PubMed  Google Scholar 

  94. Sharma, S. et al. Triggering the interferon antiviral response through an IKK-related pathway. Science 300, 1148–1151 (2003).

    CAS  PubMed  Google Scholar 

  95. Ishii, K.J. et al. TANK-binding kinase-1 delineates innate and adaptive immune responses to DNA vaccines. Nature 451, 725–729 (2008).

    CAS  PubMed  Google Scholar 

  96. Crow, Y.J., Vanderver, A., Orcesi, S., Kuijpers, T.W. & Rice, G.I. Therapies in Aicardi-Goutieres syndrome. Clin. Exp. Immunol. 175, 1–8 (2014).

    CAS  PubMed  Google Scholar 

  97. Beck-Engeser, G.B., Eilat, D. & Wabl, M. An autoimmune disease prevented by anti-retroviral drugs. Retrovirology 8, 91 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the Stetson laboratory for discussions; R, Medzhitov for helpful comments on the manuscript; and Y. Crow for continued collaborations. Supported by the Jane Coffin Childs Fund (H.E.V.), the Rita Allen Foundation (D.B.S.), the National Institute of Allergy and Infectious Diseases (AI084914), the European Union Seventh Framework Programme 2007–2013 (241779; Nuclease Immune Mediated Brain and Lupus-like conditions) and the Lupus Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel B Stetson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volkman, H., Stetson, D. The enemy within: endogenous retroelements and autoimmune disease. Nat Immunol 15, 415–422 (2014). https://doi.org/10.1038/ni.2872

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2872

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing