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of inflammatory injury and endothelial damage, 
in addition to its role in cholesterol homeostasis.  
With many of the developed world’s major  
killers thus neatly tied to this particle, HDL 
seems poised for renewed and refocused  
therapeutic investigation, despite recent  
therapeutic disappointments.
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This relative abundance of newly reported 
functions and correlations stands in sharp 
contrast, however, to the relative dearth of 
thorough mechanistic studies defining how 
exactly HDL influences target cells to achieve 
those effects. Moreover, the independent and 
dependent influences of each of these activities 
on higher-order physiological processes such as 
cardiovascular and metabolic health, vascular  
maintenance and immunity remain almost 
entirely unknown. The work of De Nardo et al.  
raises each of those general questions in more 
specific terms5; for example, what is the mecha-
nism by which the HDL complex activates  
Atf3, how does that contribute to higher-
order physiological processes in health and 
disease and, most importantly, how can that 
be exploited for therapeutic effect? Moreover, 
might HDL use that pathway to regulate other 
target-cell functions or related pathways to 
similarly target inflammation? Whatever ques-
tions are raised, the implications of the accom-
panying paper are clear: HDL exerts a potent 
influence over target cells that indicates tanta-
lizing therapeutic potential for the treatment  

endothelium and vascular smooth muscle,  
the energy metabolism of adipocytes and skel-
etal muscle, hematopoiesis, platelet activation 
and immunity3,4,9–11. Indeed, this study joins 
many others in underscoring that last cat-
egory, in which HDL is emerging as a poten-
tial regulator of not only innate  inflammatory 
responses to acute stimuli (such as the TLR 
ligands used in the present study) but also 
adaptive immunity, including antigen presen-
tation, lymphocyte proliferation and activation 
bias, and immunological signaling. Perhaps 
most importantly, HDL can also regulate the 
low-intensity and prolonged inflammatory 
states that pervade and drive chronic meta-
bolic dysfunctions such as metabolic syndrome 
and type 2 diabetes, as well as carcinogenesis 
and other inflammation-associated disease 
processes3,4,12. It is also important to note 
that even its canonical cholesterol-transport 
roles are being revised and rethought because  
‘calculated HDL’ (the accepted standard for 
HDL measurement in the clinical literature) 
has proven to be an inadequate predictor  
of disease risk1,2.
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vaccines have improved human health  
enormously. The trouble is, we are not 

quite sure how they work. While we know  
a great deal about some components of the  
vaccine response, the answers to many  
important questions remain murky: for exam-
ple, which features of the vaccine response 
are required for immunological protection, 
or whether different vaccines induce simi-
lar patterns of immunity. Without answers 
to these questions, clinical vaccine discov-
ery today looks more like the trial-and-error 
efforts of Pasteur’s era than the rational design 
approach of modern drug development. As a 
result, progress in coming up with effective  

vaccines against diseases such as HIV and 
tuberculosis remains slow. To accelerate  
vaccine development, several groups have 
identified gene-expression signatures present 
in human peripheral blood mononuclear cells 
(PBMCs) that predict immune responses to  
yellow fever1,2 and influenza vaccines3. However, 
the extent of vaccine-induced change in PBMC 
profiles can be small, and the number of genes 
measured in a typical gene-expression profiling  
experiment is large4, making it difficult to  
distinguish the signal from the noise. In this 
issue, Li et al.5 provide a new computational 
resource to make identifying subtle signatures 
easier and use it to compare the signatures  
elicited by five different vaccines.

The simplest way to analyze gene-expression 
profiles is to identify individual genes that are 
differentially expressed between phenotypes or 
conditions of interest. This can be achieved by 
comparing profiles from, say, samples obtained 
before and after vaccination, or samples from 

subjects with varying degrees of vaccine- 
induced antibody responses, and identifying 
genes whose difference in expression is greater 
than would be expected by chance. This gene-by- 
gene approach has been very useful in identi-
fying specific genes that regulate the immune 
response6, but it tends to ‘ignore’  more complex  
and subtle patterns evident in genome-scale 
expression data7.

Li et al.5 have developed a new resource to 
help identify biologically meaningful patterns 
of gene expression in PBMC profiles from vac-
cinated subjects, and they use it to ask whether 
different vaccines elicit unique or shared pat-
terns of immunity. Their study provides both a 
technical resource for transcriptional analysis 
and the first comparison of gene-expression 
signatures elicited by different vaccines.

The technical resource they have developed is 
a compendium of coordinately expressed mod-
ules of genes. They identified the modules by 
analyzing patterns of gene expression present  
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Cellular functions do not result from the  
isolated activities of individual genes. Instead, 
they arise from the cooperative effects of 
groups of functionally and sometimes physi-
cally interacting gene products. Fortunately, 
the transcript abundance of genes that func-
tion in the same biological process is often 
co-regulated9. This means that function-
ally related groups of genes can be detected 
using statistical tests of association such as 
the Pearson correlation coefficient (for linear 
relationships) or by using mutual information  
(for nonlinear relationships, as used by Li et al.5). 
 Analytic approaches that identify differences 
in the expression of groups of functionally 
related genes are therefore likely to stay closer  
to the underlying biology than those that eval-
uate genes one by one4.

A second advantage is that analysis using 
modules of genes can detect subtle changes in 
gene expression in many functionally related 
genes even when large shifts in the expression 
of smaller numbers of genes are absent. This 
is because differences between cells states are 
often manifest by small changes distributed 
across networks of genes10. This is particu-
larly important in the analysis of data from 
genetically heterogeneous human subjects 
where modest biological signals generated by 
vaccination can be swamped by noise, as Li  
et al.5 demonstrate.

Third, analysis at the module level is likely to 
be a more tolerant of measurement inaccura-
cies. For instance, measurement of differences 
in the expression of a few genes of interest in 
vaccinated subjects may be affected by tech-
nical variability from one study to the next. 
However, detection of the coordinated up- or 
downregulation of hundreds of genes is much 
less likely to be derailed by inaccurate mea-
surement of a small number of them. Indeed 

found many fewer changes, for instance, than 
are elicited by other vaccines such as YF-17D 
(an attenuated live viral vaccine against yellow 
fever virus)1,2 or the trivalent inactivated influ-
enza vaccine (TIV)3,4. Undaunted, Li and col-
leagues then applied their collection of blood 
transcriptional modules to identify subtle dif-
ferences between vaccines based on changes in 
the aggregate expression of gene modules.

This time, they found much more striking 
differences. They saw three broad patterns of 
expression: a protein recall response that cor-
related with the antibody response to TIV and 
with the antibody response to the DT portion 
of the MCV4; a primary viral response elic-
ited by YF-17D; and an anti-polysaccharide  
signature shared by the response to the  
polysaccharide portions of MCV4 and MPSV4. 
In addition, the nature of the modules shared 
by different vaccines also raised hypotheses 
about how different vaccines function. For 
instance, the modules that correlated with the 
anti-polysaccharide response suggested the 
involvement of myeloid dendritic cells (DCs).  
Subsequent experiments confirmed that 
human myeloid DCs and mouse CD11C+ DCs  
were efficiently activated by incubation with 
MPSV4. This study represents the first step 
toward identifying the molecular signatures 
that correlate with antibody responses induced 
by different classes of vaccines.

There are a number of reasons why analyz-
ing complex data sets based on differences in 
modules of co-regulated genes—rather than 
individual genes—makes sense. First, a modu-
lar approach to studying gene expression is not 
just analytic grandstanding; rather, it reflects a 
general design principle found in nature8. As 
much as hairball figures might exasperate non-
systems biologists, they represent a fair approx-
imation of how the cell’s business is transacted. 

in a very large data set created by merging 
30,000 PBMC gene-expression profiles from 
500 published studies. They used this reference 
collection of PBMC expression profiles to iden-
tify groups of genes whose expression correlates 
with each other. The graphical representation of 
this long list of gene-gene correlations (termed 
interactions) can be visualized as the familiar 
‘hairball’ beloved of systems bio logists but few 
others. In interaction networks, each gene is 
represented by a node linked by connections 
(edges) to other genes with correlated expres-
sion levels (Fig. 1). Because the expression levels  
of many genes are often closely correlated, 
interaction networks form a dense thicket 
of connections. Modules can be identified  
within such a network as groups of genes that 
have more connections between them than 
to other genes. Using such an approach with 
the interaction network defined from 30,000 
PBMC samples, Li et al.5 refined and extracted 
a set of 334 “blood transcriptional modules.”

Why did they go to the trouble of coming 
up with this set of modules? Because without 
them, changes elicited by some of the vaccines 
they were studying were too subtle to be eas-
ily detected. They analyzed PBMC expression 
profiles from 30 healthy donors vaccinated 
with one of two vaccines against the bacte-
rial pathogen Neisseria meningitidis. The first 
vaccine (MPSV4) is a quadrivalent vaccine 
containing polysaccharides from four sero-
groups of the organism; the second (MCV4), 
a polysaccharide-protein conjugate vaccine, 
comprises conjugates of the same four poly-
saccharides together with diphtheria toxoid 
(DT) protein adjuvant. Initial analysis of the 
transcriptional response to each of these vac-
cines using a conventional gene-by-gene analy-
sis yielded a disappointingly small number of 
differentially expressed genes. The authors 

Figure 1  Identifying gene modules from gene-expression data. Biological functions of the cell are carried out by groups of genes—modules—that often share 
correlated levels of expression. In a typical experiment, expression levels of thousands of genes (G1, G2,...) are measured in many samples (S1, S2,...). 
Correlation in expression level of each gene and all others is tested with linear or nonlinear tests of association. networks are modeled by connecting genes 
(represented as nodes) with lines (represented as edges) to correlated genes. Genes whose expression levels do not correlate are not connected. 
The interaction network is then compiled from all nodes and edges. Modules are identified as densely connected areas of the network.
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signaling14. The study by Li et al.5 is therefore 
important not only because it is the first com-
parative molecular analysis of five different 
vaccines but also because it starts to identify 
the transcriptional modules whose biology 
we must define in order to understand how 
vaccines work.
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that does not require manual annotation10. 
Other strategies to identify sets of genes from 
well-annotated experiments in a way that does 
not require manual annotation have proven 
a useful alternative10. In addition, a general 
concern when studying expression profiles 
from complex mixtures of cells such as those 
present in PBMC is that it is difficult to distin-
guish between changes in the biology of one 
cell state and changes in the relative frequen-
cies of cells in a mixed population. However, 
approaches to deconvolve mixed cell popula-
tions analytically13 or to measure expression 
profiles in individual cells will help address 
this concern.

Finally, if we are to truly understand the 
mechanistic basis of the vaccine response, 
simply cataloging differences in transcrip-
tional modules elicited by vaccination is 
unlikely to be sufficient by itself. Rather, we 
will need to combine observation of changes 
in modular gene expression in humans with 
directed experiments in vitro or in animal 
models to understand the biology of the 
underlying the transcriptional circuits. For 
instance, perturbing putative regulators of 
expression modules can identify genes that 
control the transcriptional response to TLR 

the modular arrangement of genes involved in 
important cellular functions may accomplish a 
similar error-reduction role in nature, insulat-
ing the cell from the consequences of aberrant 
expression of a rogue gene or two11.

Much as Li et al.5 have done, another group 
has also developed a complementary resource 
of modules and used it to analyze vaccine 
responses12. Together, these companion stud-
ies provide immunologists with a powerful 
set of resources for analyzing human PBMC 
gene-expression profiles. Helpfully, Li et al. 
have developed an intuitive web interface  
(http://www.immuneprofiling.org/papers/
meni/) and application programming interface 
(API) to enable their modular resource to be 
easily used and integrated into other analysis 
software. 

Still, a number of caveats remain to this 
modular approach to analysis. While the 
existence of modules of genes may be statisti-
cally evident, their function is not always so 
clear. Assigning a ‘name’ to a gene module is 
therefore dependent on expert knowledge that 
tends to introduce subjectivity into the process. 
A useful alternative is to identify sets of genes 
from those differentially expressed in specific, 
well-annotated experiments—an approach 
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