Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Single-cell technologies for monitoring immune systems

Abstract

The complex heterogeneity of cells, and their interconnectedness with each other, are major challenges to identifying clinically relevant measurements that reflect the state and capability of the immune system. Highly multiplexed, single-cell technologies may be critical for identifying correlates of disease or immunological interventions as well as for elucidating the underlying mechanisms of immunity. Here we review limitations of bulk measurements and explore advances in single-cell technologies that overcome these problems by expanding the depth and breadth of functional and phenotypic analysis in space and time. The geometric increases in complexity of data make formidable hurdles for exploring, analyzing and presenting results. We summarize recent approaches to making such computations tractable and discuss challenges for integrating heterogeneous data obtained using these single-cell technologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Evolving landscape of cellular traits.
Figure 2: Antibody staining in mass cytometry.
Figure 3: Classes of microtools for single-cell analysis.
Figure 4: Relative structure of data from single-cell analyses.
Figure 5

Similar content being viewed by others

References

  1. Mahony, J. et al. Development of a respiratory virus panel test for detection of twenty human respiratory viruses by use of multiplex PCR and a fluid microbead-based assay. J. Clin. Microbiol. 45, 2965–2970 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Ambrosino, E. et al. A multiplex assay for the simultaneous detection of antibodies against 15 Plasmodium falciparum and Anopheles gambiae saliva antigens. Malar. J. 9, 317 (2010).

    PubMed  PubMed Central  Google Scholar 

  3. Gaucher, D. et al. Yellow fever vaccine induces integrated multilineage and polyfunctional immune responses. J. Exp. Med. 205, 3119–3131 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Perfetto, S.P., Chattopadhyay, P.K. & Roederer, M. Seventeen-colour flow cytometry: unravelling the immune system. Nat. Rev. Immunol. 4, 648–655 (2004).

    CAS  PubMed  Google Scholar 

  5. Chattopadhyay, P.K. et al. Quantum dot semiconductor nanocrystals for immunophenotyping by polychromatic flow cytometry. Nat. Med. 12, 972–977 (2006).

    CAS  PubMed  Google Scholar 

  6. Chattopadhyay, P.K. & Roederer, M. Good cell, bad cell: flow cytometry reveals T-cell subsets important in HIV disease. Cytometry A 77, 614–622 (2010).

    PubMed  PubMed Central  Google Scholar 

  7. Appay, V., van Lier, R.A., Sallusto, F. & Roederer, M. Phenotype and function of human T lymphocyte subsets: consensus and issues. Cytometry A 73, 975–983 (2008).This review describes the traits and functions of classically defined T cell subsets, highlighting the uncertainties of profiling the immune system. The authors demonstrate that different pathogens induce different profiles of T cell responses, that there is no consensus for naming and describing T cell subsets, that functional attributes can vary upon activation and that there is little data that comprehensively correlate phenotypic or functional traits with effective immunity.

    PubMed  Google Scholar 

  8. Han, Q. et al. Polyfunctional responses by human T cells result from sequential release of cytokines. Proc. Natl. Acad. Sci. USA 109, 1607–1612 (2012).Arrays of subnanoliter compartments are used to monitor the kinetic expression of four cytokines over 17 hours from thousands of activated T cells, demonstrating that the kinetic trajectory of cytokine release can predict T cell effector phenotype.

    CAS  PubMed  Google Scholar 

  9. Chattopadhyay, P.K. et al. Brilliant violet fluorophores: a new class of ultrabright fluorescent compounds for immunofluorescence experiments. Cytometry A 81, 456–466 (2012).

    PubMed  Google Scholar 

  10. Newell, E.W., Klein, L.O., Yu, W. & Davis, M.M. Simultaneous detection of many T-cell specificities using combinatorial tetramer staining. Nat. Methods 6, 497–499 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Krutzik, P.O. & Nolan, G.P. Fluorescent cell barcoding in flow cytometry allows high-throughput drug screening and signaling profiling. Nat. Methods 3, 361–368 (2006).

    CAS  PubMed  Google Scholar 

  12. Nolan, J.P. & Condello, D. Spectral flow cytometry. in Current Protocols in Cytometry (John Wiley & Sons, Inc., 2001).

  13. Sanders, C.K. & Mourant, J.R. Advantages of full spectrum flow cytometry. J Biomed. Opt. 18, 037004 (2013).

    PubMed  PubMed Central  Google Scholar 

  14. Bendall, S.C. et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332, 687–696 (2011).This article introduced mass cytometry by demonstrating the power of highly multiparametric technology and analysis. From a single sample, the entire hematopoietic system could be recapitulated and each subset examined for differences in cell signalling profiles. The paper also introduced SPADE (ref. 18 ), a tool commonly recommended for analysis of mass cytometry datasets.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Bendall, S.C., Nolan, G.P., Roederer, M. & Chattopadhyay, P.K. A deep profiler's guide to cytometry. Trends Immunol. 33, 323–332 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Newell, E.W., Sigal, N., Bendall, S.C., Nolan, G.P. & Davis, M.M. Cytometry by time-of-flight shows combinatorial cytokine expression and virus-specific cell niches within a continuum of CD8+ T cell phenotypes. Immunity 36, 142–152 (2012).Mass cytometry was used to demonstrate the heterogeneity of antigen-specific T cell responses and the complexity of T cell differentiation pathways. The authors propose that T cells specific for different viruses reside in different niches in a complex data space, and that the combination of mass cytometry and an adapted form of principal-component analysis can reveal these niches.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Bodenmiller, B. et al. Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators. Nat. Biotechnol. 30, 858–867 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Qiu, P. et al. Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nat. Biotechnol. 29, 886–891 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Amir el, A.D. et al. viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat. Biotechnol. 31, 545–552 (2013).

    Google Scholar 

  20. Safeukui, I. et al. Surface area loss and increased sphericity account for the splenic entrapment of subpopulations of Plasmodium falciparum ring-infected erythrocytes. PLoS ONE 8, e60150 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Maguire, O., Collins, C., O'Loughlin, K., Miecznikowski, J. & Minderman, H. Quantifying nuclear p65 as a parameter for NF-κB activation: correlation between ImageStream cytometry, microscopy, and Western blot. Cytometry A 79, 461–469 (2011).

    PubMed  PubMed Central  Google Scholar 

  22. Rao, R.R., Li, Q., Gubbels Bupp, M.R. & Shrikant, P.A. Transcription factor Foxo1 represses T-bet-mediated effector functions and promotes memory CD8(+) T cell differentiation. Immunity 36, 374–387 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Beum, P.V. et al. Quantitative analysis of protein co-localization on B cells opsonized with rituximab and complement using the ImageStream multispectral imaging flow cytometer. J. Immunol. Methods 317, 90–99 (2006).

    CAS  PubMed  Google Scholar 

  24. Wabnitz, G.H. et al. L-plastin phosphorylation: a novel target for the immunosuppressive drug dexamethasone in primary human T cells. Eur. J. Immunol. 41, 3157–3169 (2011).

    CAS  PubMed  Google Scholar 

  25. Catania, A., Barrajon-Catalan, E., Nicolosi, S., Cicirata, F. & Micol, V. Immunoliposome encapsulation increases cytotoxic activity and selectivity of curcumin and resveratrol against HER2 overexpressing human breast cancer cells. Breast Cancer Res. Treat. 141, 55–65 (2013).

    CAS  PubMed  Google Scholar 

  26. Kamphuis, M.M. et al. Targeting of cancer cells using click-functionalized polymer capsules. J. Am. Chem. Soc. 132, 15881–15883 (2010).

    CAS  PubMed  Google Scholar 

  27. Lindstrom, S. & Andersson-Svahn, H. Overview of single-cell analyses: microdevices and applications. Lab Chip 10, 3363–3372 (2010).

    PubMed  Google Scholar 

  28. Yin, H.B. & Marshall, D. Microfluidics for single cell analysis. Curr. Opin. Biotechnol. 23, 110–119 (2012).

    CAS  PubMed  Google Scholar 

  29. Yalcin, A., Yamanaka, Y.J. & Love, J.C. Analytical technologies for integrated single-cell analysis of human immune responses. Methods Mol. Biol. 853, 211–235 (2012).

    CAS  PubMed  Google Scholar 

  30. Moonsamy, P.V. et al. High throughput HLA genotyping using 454 sequencing and the Fluidigm Access Array System for simplified amplicon library preparation. Tissue Antigens 81, 141–149 (2013).

    CAS  PubMed  Google Scholar 

  31. Ma, C. et al. A clinical microchip for evaluation of single immune cells reveals high functional heterogeneity in phenotypically similar T cells. Nat. Med. 17, 738–743 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Bradshaw, E.M. et al. Concurrent detection of secreted products from human lymphocytes by microengraving: cytokines and antigen-reactive antibodies. Clin. Immunol. 129, 10–18 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Varadarajan, N. et al. Rapid, efficient functional characterization and recovery of HIV-specific human CD8(+) T cells using microengraving. Proc. Natl. Acad. Sci. USA 109, 3885–3890 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Sendra, V.G., Lie, A., Romain, G., Agarwal, S.K. & Varadarajan, N. Detection and isolation of auto-reactive human antibodies from primary B cells. Methods 64, 153–159 (2013).

    CAS  PubMed  Google Scholar 

  35. Torres, A.J., Contento, R.L., Gordo, S., Wucherpfennig, K.W. & Love, J.C. Functional single-cell analysis of T-cell activation by supported lipid bilayer-tethered ligands on arrays of nanowells. Lab Chip 13, 90–99 (2013).

    CAS  PubMed  Google Scholar 

  36. Varadarajan, N. et al. A high-throughput single-cell analysis of human CD8(+) T cell functions reveals discordance for cytokine secretion and cytolysis. J. Clin. Invest. 121, 4322–4331 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Yamanaka, Y.J. et al. Single-cell analysis of the dynamics and functional outcomes of interactions between human natural killer cells and target cells. Integr. Biol. 4, 1175–1184 (2012).

    CAS  Google Scholar 

  38. Zhu, H. et al. Detecting cytokine release from single T-cells. Anal. Chem. 81, 8150–8156 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Han, Q., Bradshaw, E.M., Nilsson, B., Hafler, D.A. & Love, J.C. Multidimensional analysis of the frequencies and rates of cytokine secretion from single cells by quantitative microengraving. Lab Chip 10, 1391–1400 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Jin, A. et al. A rapid and efficient single-cell manipulation method for screening antigen-specific antibody-secreting cells from human peripheral blood. Nat. Med. 15, 1088–1092 (2009).

    CAS  PubMed  Google Scholar 

  41. Lu, Y. et al. High-throughput secretomic analysis of single cells to assess functional cellular heterogeneity. Anal. Chem. 85, 2548–2556 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Khorshidi, M.A. et al. Analysis of transient migration behavior of natural killer cells imaged in situ and in vitro. Integr. Biol. 3, 770–778 (2011).

    CAS  Google Scholar 

  43. Hong, S., Pan, Q. & Lee, L.P. Single-cell level co-culture platform for intercellular communication. Integr. Biol. 4, 374–380 (2012).

    CAS  Google Scholar 

  44. Guldevall, K. et al. Imaging immune surveillance of individual natural killer cells confined in microwell arrays. PLoS ONE 5, e15453 (2010).

    PubMed  PubMed Central  Google Scholar 

  45. Schiffenbauer, Y.S. et al. A cell chip for sequential imaging of individual non-adherent live cells reveals transients and oscillations. Lab Chip 9, 2965–2972 (2009).

    CAS  PubMed  Google Scholar 

  46. Frisk, T.W., Khorshidi, M.A., Guldevall, K., Vanherberghen, B. & Onfelt, B. A silicon-glass microwell platform for high-resolution imaging and high-content screening with single cell resolution. Biomed. Microdevices 13, 683–693 (2011).

    PubMed  Google Scholar 

  47. Zaretsky, I. et al. Monitoring the dynamics of primary T cell activation and differentiation using long term live cell imaging in microwell arrays. Lab Chip 12, 5007–5015 (2012).

    CAS  PubMed  Google Scholar 

  48. Wang, J. et al. Quantitating cell-cell interaction functions with applications to glioblastoma multiforme cancer cells. Nano Lett. 12, 6101–6106 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Gong, Y., Ogunniyi, A.O. & Love, J.C. Massively parallel detection of gene expression in single cells using subnanolitre wells. Lab Chip 10, 2334–2337 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Shi, Q. et al. Single-cell proteomic chip for profiling intracellular signaling pathways in single tumor cells. Proc. Natl. Acad. Sci. USA 109, 419–424 (2012).

    CAS  PubMed  Google Scholar 

  51. Love, J.C. Integrated process design for single-cell analytical technologies. AIChE J. 56, 2496–2502 (2010).

    CAS  Google Scholar 

  52. Vanherberghen, B. et al. Classification of human natural killer cells based on migration behavior and cytotoxic response. Blood 121, 1326–1334 (2013).

    CAS  PubMed  Google Scholar 

  53. Brouzes, E. et al. Droplet microfluidic technology for single-cell high-throughput screening. Proc. Natl. Acad. Sci. USA 106, 14195–14200 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Konry, T., Dominguez-Villar, M., Baecher-Allan, C., Hafler, D.A. & Yarmush, M.L. Droplet-based microfluidic platforms for single T cell secretion analysis of IL-10 cytokine. Biosens. Bioelectron. 26, 2707–2710 (2011).

    CAS  PubMed  Google Scholar 

  55. Dominguez, M.H. et al. Highly multiplexed quantitation of gene expression on single cells. J. Immunol. Methods 391, 133–145 (2013).

    CAS  PubMed  Google Scholar 

  56. Shalek, A.K. et al. Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature 498, 236–240 (2013).RNA-seq was used to identify new subsets of dendritic cells missed by other single-cell assays, and this work provides a quantitative analysis of the limitations of RNA-seq accuracy when measuring transcripts with low expression.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Tang, F. et al. Deterministic and stochastic allele specific gene expression in single mouse blastomeres. PLoS ONE 6, e21208 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Aghaeepour, N. et al. Critical assessment of automated flow cytometry data analysis techniques. Nat. Methods 10, 228–238 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Aghaeepour, N. et al. Early immunologic correlates of HIV protection can be identified from computational analysis of complex multivariate T-cell flow cytometry assays. Bioinformatics 28, 1009–1016 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Aghaeepour, N. et al. RchyOptimyx: cellular hierarchy optimization for flow cytometry. Cytometry A 81, 1022–1030 (2012).

    PubMed  PubMed Central  Google Scholar 

  61. Finak, G. et al. Mixture models for single-cell assays with applications to vaccine studies. Biostatistics 15, 87–101 (2014).

    PubMed  Google Scholar 

  62. Mahnke, Y.D. & Roederer, M. Optimizing a multicolor immunophenotyping assay. Clin. Lab. Med. 27, 469–485 (2007).

    PubMed  PubMed Central  Google Scholar 

  63. McDavid, A. et al. Data exploration, quality control and testing in single-cell qPCR-based gene expression experiments. Bioinformatics 29, 461–467 (2013).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the W.M. Keck Foundation and the US National Institute of Allergy And Infectious Diseases (1U19AI089992, 1R56AI104274 and 5R21AI106025). The content is solely the responsibility of the authors and does not necessarily represent the official views of the US National Institute of Allergy And Infectious Diseases or the US National Institutes of Health. We thank A. Shalek for helpful comments on scRNA-seq and N. Aghaeepour for discussions about data-analysis tools. J.C.L. is a Camille Dreyfus Teacher-Scholar. We acknowledge the service to the MIT community of the late Sean Collier.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Christopher Love.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chattopadhyay, P., Gierahn, T., Roederer, M. et al. Single-cell technologies for monitoring immune systems. Nat Immunol 15, 128–135 (2014). https://doi.org/10.1038/ni.2796

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2796

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology