Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Unifying immunology with informatics and multiscale biology

A Corrigendum to this article was published on 19 August 2014

Abstract

The immune system is a highly complex and dynamic system. Historically, the most common scientific and clinical practice has been to evaluate its individual components. This kind of approach cannot always expose the interconnecting pathways that control immune-system responses and does not reveal how the immune system works across multiple biological systems and scales. High-throughput technologies can be used to measure thousands of parameters of the immune system at a genome-wide scale. These system-wide surveys yield massive amounts of quantitative data that provide a means to monitor and probe immune-system function. New integrative analyses can help synthesize and transform these data into valuable biological insight. Here we review some of the computational analysis tools for high-dimensional data and how they can be applied to immunology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Integrating biological data from multiple sources to construct regulatory network models.
Figure 2: Identifying drugs to treat diseases by using networks.
Figure 3: Constructing causal regulatory networks to understand the immunological basis of disease and advance precision medicine.

Similar content being viewed by others

References

  1. Pascual, V., Chaussabel, D. & Banchereau, J. A genomic approach to human autoimmune diseases. Annu. Rev. Immunol. 28, 535–571 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Boisson, B. et al. Immunodeficiency, autoinflammation and amylopectinosis in humans with inherited HOIL-1 and LUBAC deficiency. Nat. Immunol. 13, 1178–1186 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chaussabel, D. et al. A modular analysis framework for blood genomics studies: application to systemic lupus erythematosus. Immunity 29, 150–164 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Querec, T.D. et al. Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans. Nat. Immunol. 10, 116–125 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Nakaya, H.I. et al. Systems biology of vaccination for seasonal influenza in humans. Nat. Immunol. 12, 786–795 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Furman, D. et al. Apoptosis and other immune biomarkers predict influenza vaccine responsiveness. Mol. Syst. Biol. 9, 659 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Obermoser, G. et al. Systems scale interactive exploration reveals quantitative and qualitative differences in response to influenza and pneumococcal vaccines. Immunity 38, 831–844 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Berry, M.P. et al. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 466, 973–977 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cliff, J.M. et al. Distinct phases of blood gene expression pattern through tuberculosis treatment reflect modulation of the humoral immune response. J. Infect. Dis. 207, 18–29 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Bloom, C.I. et al. Detectable changes in the blood transcriptome are present after two weeks of antituberculosis therapy. PLoS ONE 7, e46191 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Law, G.L., Korth, M., Benecke, A. & Katze, M. Systems virology: host-directed approaches to viral pathogenesis and drug targeting. Nat. Rev. Microbiol. 11, 455–466 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chiche, L., Jourde-Chiche, N., Pascual, V. & Chaussabel, D. Current perspectives on systems immunology approaches to rheumatic diseases. Arthritis Rheum. 65, 1407–1417 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Hummel, M. et al. A biologic definition of Burkitt's lymphoma from transcriptional and genomic profiling. N. Engl. J. Med. 354, 2419–2430 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Casanova, J.-L., Abel, L. & Quintana-Murci, L. Immunology taught by human genetics. Cold Spring Harb. Symp. Quant. Biol. 4, a007260 (2013).

    Google Scholar 

  15. Xavier, R.J. & Rioux, J.D. Genome-wide association studies: a new window into immune-mediated diseases. Nat. Rev. Immunol. 8, 631–643 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Orrù, V. et al. Genetic variants regulating immune cell levels in health and disease. Cell 155, 242–256 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Visscher, P.M., Brown, M., McCarthy, M. & Yang, J. Five years of GWAS discovery. Am. J. Hum. Genet. 90, 7–24 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cho, J.H. & Gregersen, P. Genomics and the multifactorial nature of human autoimmune disease. N. Engl. J. Med. 365, 1612–1623 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Cotsapas, C. et al. Pervasive sharing of genetic effects in autoimmune disease. PLoS Genet. 7, e1002254 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Goris, A. & Liston, A. The immunogenetic architecture of autoimmune disease. Cold Spring Harb. Perspect. Biol. 4, a007260 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Voight, B.F. & Cotsapas, C. Human genetics offers an emerging picture of common pathways and mechanisms in autoimmunity. Curr. Opin. Immunol. 24, 552–557 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Bolze, A. et al. Ribosomal protein SA haploinsufficiency in humans with isolated congenital asplenia. Science 340, 976–978 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Flomenberg, N. et al. Impact of HLA class I and class II high-resolution matching on outcomes of unrelated donor bone marrow transplantation: HLA-C mismatching is associated with a strong adverse effect on transplantation outcome. Blood 104, 1923–1930 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Spellman, S.R. et al. A perspective on the selection of unrelated donors and cord blood units for transplantation. Blood 120, 259–265 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang, C. et al. High-throughput, high-fidelity HLA genotyping with deep sequencing. Proc. Natl. Acad. Sci. USA 109, 8676–8681 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Trowsdale, J. The MHC, disease and selection. Immunol. Lett. 137, 1–8 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Prugnolle, F. et al. Pathogen-driven selection and worldwide HLA class I diversity. Curr. Biol. 15, 1022–1027 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Newell, E.W et al. Combinatorial tetramer staining and mass cytometry analysis facilitate T-cell epitope mapping and characterization. Nat. Biotechnol. 31, 623–629 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. DeKosky, B.J. et al. High-throughput sequencing of the paired human immunoglobulin heavy and light chain repertoire. Nat. Biotechnol. 31, 166–169 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jiang, N. et al. Lineage structure of the human antibody repertoire in response to influenza vaccination. Sci. Transl. Med. 5, 171ra19 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Wu, X. et al. Focused evolution of HIV-1 neutralizing antibodies revealed by structures and deep sequencing. Science 333, 1593–1602 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wu, D. et al. High-throughput sequencing detects minimal residual disease in acute T lymphoblastic leukemia. Sci. Transl. Med. 4, 134ra63 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Robins, H.S. et al. Overlap and effective size of the human CD8+ T cell receptor repertoire. Sci. Transl. Med. 2, 47ra64 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Boyd, S.D. et al. Measurement and clinical monitoring of human lymphocyte clonality by massively parallel VDJ pyrosequencing. Sci. Transl. Med. 1, 12ra23 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Jiang, N. et al. Determinism and stochasticity during maturation of the zebrafish antibody repertoire. Proc. Natl. Acad. Sci. USA 108, 5348–5353 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bolotin, D.A. et al. MiTCR: software for T-cell receptor sequencing data analysis. Nat. Methods 10, 813–814 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Alamyar, E., Giudicelli, V., Li, S., Duroux, P. & Lefranc, M.-P. IMGT/HighV-QUEST: the IMGT® web portal for immunoglobulin (IG) or antibody and T cell receptor (TR) analysis from NGS high throughput and deep sequencing. Immunome Res. 882, 569–604 (2012).

    CAS  Google Scholar 

  38. Boyd, S.D. Diagnostic applications of high-throughput DNA sequencing. Annu. Rev. Pathol. 8, 381–410 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Wang, Z., Gerstein, M. & Snyder, M. RNA-seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10, 57–63 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mortazavi, A., Williams, B., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621–628 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Fairfax, B.P. et al. Genetics of gene expression in primary immune cells identifies cell type-specific master regulators and roles of HLA alleles. Nat. Genet. 44, 502–510 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang, J.A., Mortazavi, A., Williams, B., Wold, B. & Rothenberg, E. Dynamic transformations of genome-wide epigenetic marking and transcriptional control establish T cell identity. Cell 149, 467–482 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yosef, N. et al. Dynamic regulatory network controlling TH17 cell differentiation. Nature 496, 461–468 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shalek, A.K. et al. Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature 498, 236–240 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Robinson, M.D., McCarthy, D. & Smyth, G. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li, J., Witten, D., Johnstone, I. & Tibshirani, R. Normalization, testing, and false discovery rate estimation for RNA-sequencing data. Biostatistics 13, 523–538 (2012).

    Article  PubMed  Google Scholar 

  49. Anders, S., Reyes, A. & Huber, W. Detecting differential usage of exons from RNA-seq data. Genome Res. 22, 2008–2017 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Efron, B. & Tibshirani, R. On testing the significance of sets of genes. Ann. Appl. Stat. 1, 107–129 (2007).

    Article  Google Scholar 

  52. Haining, W.N. & Wherry, E.J. Integrating genomic signatures for immunologic discovery. Immunity 32, 152–161 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Liberzon, A. et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics 27, 1739–1740 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Reich, M. et al. GenePattern 2.0. Nat. Genet. 38, 500–501 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Huang, W., Sherman, B. & Lempicki, R. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    Article  CAS  Google Scholar 

  56. Huang, W., Sherman, B. & Lempicki, R. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1–13 (2009).

    Article  CAS  Google Scholar 

  57. Chen, E.Y. et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 14, 128 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Shabalin, A.A. Matrix eQTL: ultra fast eQTL analysis via large matrix operations. Bioinformatics 28, 1353–1358 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jostins, L. et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491, 119–124 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Westra, H.-J. et al. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat. Genet. 45, 1238–1243 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. GTEx Consortium. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 45, 580–585 (2013).

  62. Bendall, S.C. et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332, 687–696 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Aghaeepour, N. et al. Critical assessment of automated flow cytometry data analysis techniques. Nat. Methods 10, 228–238 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Qiu, P. et al. Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nat. Biotechnol. 29, 886–891 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Newell, E.W., Sigal, N., Bendall, S.C., Nolan, G.P. & Davis, M.M. Cytometry by time-of-flight shows combinatorial cytokine expression and virus-specific cell niches within a continuum of CD8+ T cell phenotypes. Immunity 36, 142–152 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Amir, A.D. et al. viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat. Biotechnol. 31, 545–552 (2013).

    Article  CAS  PubMed Central  Google Scholar 

  67. Shen-Orr, S.S. et al. Cell type–specific gene expression differences in complex tissues. Nat. Methods 7, 287–289 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ahn, J. et al. DeMix: deconvolution for mixed cancer transcriptomes using raw measured data. Bioinformatics 29, 1865–1871 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Vahedi, G. et al. Helper T-cell identity and evolution of differential transcriptomes and epigenomes. Immunol. Rev. 252, 24–40 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Ciofani, M. et al. A validated regulatory network for Th17 cell specification. Cell 151, 289–303 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Karczewski, K.J. et al. Systematic functional regulatory assessment of disease-associated variants. Proc. Natl. Acad. Sci. USA 110, 9607–9612 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Rozowsky, J. et al. AlleleSeq: analysis of allele-specific expression and binding in a network framework. Mol. Syst. Biol. 7, 522 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Jee, J. et al. ACT: aggregation and correlation toolbox for analyses of genome tracks. Bioinformatics 27, 1152–1154 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Arazi, A., Pendergraft, W., Ribeiro, R., Perelson, A. & Hacohen, N. Human systems immunology: hypothesis-based modeling and unbiased data-driven approaches. Semin. Immunol. 25, 193–200 (2013).

    Article  CAS  PubMed  Google Scholar 

  75. Germain, R.N., Meier-Schellersheim, M., Nita-Lazar, A. & Fraser, I. Systems biology in immunology: a computational modeling perspective. Annu. Rev. Immunol. 29, 527–585 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Segal, E. et al. Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat. Genet. 34, 166–176 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Amit, I., Regev, A. & Hacohen, N. Strategies to discover regulatory circuits of the mammalian immune system. Nat. Rev. Immunol. 11, 873–880 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Novershtern, N. et al. Densely interconnected transcriptional circuits control cell states in human hematopoiesis. Cell 144, 296–309 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Jojic, V. et al. Identification of transcriptional regulators in the mouse immune system. Nat. Immunol. 14, 633–643 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Amit, I. et al. Unbiased reconstruction of a mammalian transcriptional network mediating pathogen responses. Science 326, 257–263 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Chevrier, N. et al. Systematic discovery of TLR signaling components delineates viral-sensing circuits. Cell 147, 853–867 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Zhang, B. & Horvath, S. A general framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. Biol. 4, Article17 (2005).

    Article  PubMed  Google Scholar 

  83. Voineagu, I. et al. Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature 474, 380–384 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhang, B. et al. Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer's disease. Cell 153, 707–720 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chen, Y. et al. Variations in DNA elucidate molecular networks that cause disease. Nature 452, 429–435 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wang, I.M. et al. Systems analysis of eleven rodent disease models reveals an inflammatome signature and key drivers. Mol. Syst. Biol. 8, 594 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Schadt, E.E. et al. An integrative genomics approach to infer causal associations between gene expression and disease. Nat. Genet. 37, 710–717 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Greenawalt, D.M. et al. A survey of the genetics of stomach, liver, and adipose gene expression from a morbidly obese cohort. Genome Res. 21, 1008–1016 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhong, H. et al. Liver and adipose expression associated SNPs are enriched for association to type 2 diabetes. PLoS Genet. 6, e1000932 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Wishart, D.S. et al. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 34, D668–D672 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Sirota, M. et al. Discovery and preclinical validation of drug indications using compendia of public gene expression data. Sci. Transl. Med. 3, 96ra77 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Dudley, J.T. et al. Computational repositioning of the anticonvulsant topiramate for inflammatory bowel disease. Sci. Transl. Med. 3, 96ra76 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Saito, R. et al. A travel guide to Cytoscape plugins. Nat. Methods 9, 1069–1076 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Srivas, R. et al. Assembling global maps of cellular function through integrative analysis of physical and genetic networks. Nat. Protoc. 6, 1308–1323 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Schadt, E.E., Linderman, M., Sorenson, J., Lee, L. & Nolan, G. Computational solutions to large-scale data management and analysis. Nat. Rev. Genet. 11, 647–657 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Dudley, J.T. & Butte, A. In silico research in the era of cloud computing. Nat. Biotechnol. 28, 1181–1185 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Dudley, J.T., Pouliot, Y., Chen, R., Morgan, A.A. & Butte, A.J. Translational bioinformatics in the cloud: an affordable alternative. Genome Med. 2, 51 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Kotecha, N., Krutzik, P. & Irish, J. Web-based analysis and publication of flow cytometry experiments. Curr. Protoc. Cytom. 53, 10.17 (2010).

    Google Scholar 

  100. Lum, P.Y. et al. Extracting insights from the shape of complex data using topology. Sci. Rep. 3, 1236 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Thomas, N., Heather, J., Ndifon, W., Shawe-Taylor, J. & Chain, B. Decombinator: a tool for fast, efficient gene assignment in T-cell receptor sequences using a finite state machine. Bioinformatics 29, 542–550 (2013).

    Article  CAS  PubMed  Google Scholar 

  102. Warren, R.L., Nelson, B. & Holt, R. Profiling model T-cell metagenomes with short reads. Bioinformatics 25, 458–464 (2009).

    Article  CAS  PubMed  Google Scholar 

  103. Barak, M., Zuckerman, N., Edelman, H., Unger, R. & Mehr, R. IgTree: creating Immunoglobulin variable region gene lineage trees. J. Immunol. Methods 338, 67–74 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Glanville, J. et al. Precise determination of the diversity of a combinatorial antibody library gives insight into the human immunoglobulin repertoire. Proc. Natl. Acad. Sci. USA 106, 20216–20221 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Pepke, S., Wold, B. & Mortazavi, A. Computation for ChIP-seq and RNA-seq studies. Nat. Methods 6, S22–S32 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Koboldt, D.C. et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 22, 568–576 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. DePristo, M.A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Guttman, M. et al. Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat. Biotechnol. 28, 503–510 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Langmead, B., Schatz, M., Lin, J., Pop, M. & Salzberg, S. Searching for SNPs with cloud computing. Genome Biol. 10, R134 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Wilbanks, E.G. & Facciotti, M. Evaluation of algorithm performance in ChIP-seq peak detection. PLoS ONE 5, e11471 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Ji, H. et al. An integrated software system for analyzing ChIP-chip and ChIP-seq data. Nat. Biotechnol. 26, 1293–1300 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Rozowsky, J. et al. PeakSeq enables systematic scoring of ChIP-seq experiments relative to controls. Nat. Biotechnol. 27, 66–75 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kharchenko, P.V., Tolstorukov, M. & Park, P. Design and analysis of ChIP-seq experiments for DNA-binding proteins. Nat. Biotechnol. 26, 1351–1359 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Broman, K.W., Wu, H., Sen, S. & Churchill, G. R/qtl: QTL mapping in experimental crosses. Bioinformatics 19, 889–890 (2003).

    Article  CAS  PubMed  Google Scholar 

  118. Clayton, D. & Leung, H.-T. An R package for analysis of whole-genome association studies. Hum. Hered. 64, 45–51 (2007).

    Article  PubMed  Google Scholar 

  119. Watson, M. CoXpress: differential co-expression in gene expression data. BMC Bioinformatics 7, 509 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Bonneau, R. et al. The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo. Genome Biol. 7, R36 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Basso, K. et al. Reverse engineering of regulatory networks in human B cells. Nat. Genet. 37, 382–390 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Aghaeepour, N., Nikolic, R., Hoos, H. & Brinkman, R. Rapid cell population identification in flow cytometry data. Cytometry 79A, 6–13 (2011).

    Article  Google Scholar 

  123. Pyne, S. et al. Automated high-dimensional flow cytometric data analysis. Proc. Natl. Acad. Sci. USA 106, 8519–8524 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Qian, Y. et al. Elucidation of seventeen human peripheral blood B-cell subsets and quantification of the tetanus response using a density-based method for the automated identification of cell populations in multidimensional flow cytometry data. Cytometry Clin. Cytom. 78V (suppl. 1), S69–S82 (2010).

    Article  CAS  Google Scholar 

  125. Zare, H., Shooshtari, P., Gupta, A. & Brinkman, R. Data reduction for spectral clustering to analyze high throughput flow cytometry data. BMC Bioinformatics 11, 403 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome Res. 19, 1639–1645 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Lefranc, M.P. et al. IMGT, the international ImMunoGeneTics database. Nucleic Acids Res. 27, 209–212 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Siebert, J.C., Munsil, W., Rosenberg-Hasson, Y., Davis, M. & Maecker, H. The Stanford Data Miner: a novel approach for integrating and exploring heterogeneous immunological data. J. Transl. Med. 10, 62 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Pritchard, J.K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Kumar, S., Sanderford, M., Gray, V., Ye, J. & Liu, L. Evolutionary diagnosis method for variants in personal exomes. Nat. Methods 9, 855–856 (2012).

    Article  CAS  PubMed  Google Scholar 

  131. Li, M.J. et al. GWASdb: a database for human genetic variants identified by genome-wide association studies. Nucleic Acids Res. 40, D1047–D1054 (2012).

    Article  CAS  PubMed  Google Scholar 

  132. Ward, L.D. & Kellis, M. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. 40, D930–D934 (2012).

    Article  CAS  PubMed  Google Scholar 

  133. Boyle, A.P. et al. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 22, 1790–1797 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Raychaudhuri, S. et al. Identifying relationships among genomic disease regions: predicting genes at pathogenic SNP associations and rare deletions. PLoS Genet. 5, e1000534 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Griffith, M. et al. DGIdb: mining the druggable genome. Nat. Methods 10, 1209–1210 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Engreitz, J.M. et al. ProfileChaser: searching microarray repositories based on genome-wide patterns of differential expression. Bioinformatics 27, 3317–3318 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Heiser, L.M. et al. Subtype and pathway specific responses to anticancer compounds in breast cancer. Proc. Natl. Acad. Sci. USA 109, 2724–2729 (2012).

    Article  CAS  PubMed  Google Scholar 

  138. Tan, C.M., Chen, E., Dannenfelser, R., Clark, N. & Ma'ayan, A. Network2Canvas: network visualization on a canvas with enrichment analysis. Bioinformatics 29, 1872–1878 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank C. Berin, B. Brown, R. Kosoy, B. Readhead and C. Tato for critical reading and feedback on the manuscript. This work was supported by funding from the National Institute of Diabetes and Digestive and Kidney Diseases (R01 DK098242) and the Pharmaceutical Research and Manufacturers of America Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel T Dudley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kidd, B., Peters, L., Schadt, E. et al. Unifying immunology with informatics and multiscale biology. Nat Immunol 15, 118–127 (2014). https://doi.org/10.1038/ni.2787

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2787

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research