Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Quantitative shotgun proteomics: considerations for a high-quality workflow in immunology

Proteomics based on high-resolution mass spectrometry has become a powerful tool for the analysis of protein abundance, modifications and interactions. Here we describe technical aspects of proteomics workflows, instrumentation as well as computational considerations to obtain high-quality proteomics data.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cellular and immunological processes that can be studied using proteomics tools.
Figure 2: Shotgun proteomics workflow.
Figure 3: Strategies for quantification of peptides from MS1 spectra.
Figure 4: Computational data analysis.

References

  1. Aebersold, R. & Mann, M. Nature 422, 198–207 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Altelaar, A.F., Munoz, J. & Heck, A.J. Nat. Rev. Genet. 14, 35–48 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Mann, M., Kulak, N.A., Nagaraj, N. & Cox, J. Mol. Cell 49, 583–590 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Cutillas, P.R. & Timms, J.F. Methods Mol. Biol. 658, 1–357 (2010).

    Google Scholar 

  5. Bantscheff, M., Lemeer, S., Savitski, M.M. & Kuster, B. Anal. Bioanal. Chem. 404, 939–965 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Leon, I.R., Schwammle, V., Jensen, O.N. & Sprenger, R.R. Mol. Cell. Proteomics 12, 2992–3005 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sandra, K. et al. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 866, 48–63 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Nagaraj, N. et al. Mol. Cell. Proteomics 11, M111013722 (2012).

    Article  Google Scholar 

  9. Scigelova, M. & Makarov, A. Proteomics 6 (suppl. 2), 16–21 (2006).

    Article  PubMed  Google Scholar 

  10. Ens, W. & Standing, K.G. Methods Enzymol. 402, 49–78 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Lange, V., Picotti, P., Domon, B. & Aebersold, R. Mol. Syst. Biol. 4, 222 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Peterson, A.C., Russell, J.D., Bailey, D.J., Westphall, M.S. & Coon, J.J. Mol. Cell. Proteomics 11, 1475–1488 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Olsen, J.V. et al. Nat. Methods 4, 709–712 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Mikesh, L.M. et al. Biochim. Biophys. Acta 1764, 1811–1822 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Luber, C.A. et al. Immunity 32, 279–289 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Hettinger, J. et al. Nat. Immunol. 14, 821–830 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Meissner, F., Scheltema, R.A., Mollenkopf, H.J. & Mann, M. Science 340, 475–478 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Gupta, N. et al. Nat. Immunol. 7, 625–633 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Trost, M. et al. Immunity 30, 143–154 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Gingras, A.C., Gstaiger, M., Raught, B. & Aebersold, R. Nat. Rev. Mol. Cell Biol. 8, 645–654 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Pichlmair, A. et al. Nature 487, 486–490 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Li, S., Wang, L., Berman, M., Kong, Y.Y. & Dorf, M.E. Immunity 35, 426–440 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Plasman, K., Van Damme, P. & Gevaert, K. Curr. Opin. Chem. Biol. 17, 66–72 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Navarro, M.N., Goebel, J., Feijoo-Carnero, C., Morrice, N. & Cantrell, D.A. Nat. Immunol. 12, 352–361 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chevrier, N. et al. Cell 147, 853–867 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Hoppes, R., Ekkebus, R., Schumacher, T.N. & Ovaa, H. J. Proteomics 73, 1945–1953 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Altelaar, A.F. & Heck, A.J. Curr. Opin. Chem. Biol. 16, 206–213 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Ong, S.E. et al. Mol. Cell. Proteomics 1, 376–386 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Howden, A.J. et al. Nat. Methods 10, 343–346 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Geiger, T. et al. Nat. Protoc. 6, 147–157 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Trudgian, D.C. et al. Proteomics 11, 2790–2797 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Cox, J. & Mann, M. Nat. Biotechnol. 26, 1367–1372 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Sadygov, R.G., Cociorva, D. & Yates, J.R. III . Nat. Methods 1, 195–202 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Elias, J.E. & Gygi, S.P. Nat. Methods 4, 207–214 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Bradshaw, R.A., Burlingame, A.L., Carr, S. & Aebersold, R. Mol. Cell. Proteomics 5, 787–788 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Olsen, J.V. & Mann, M. Sci. Signal. 4, pe7 (2011).

    Article  PubMed  Google Scholar 

  37. Rebsamen, M., Kandasamy, R.K. & Superti-Furga, G. Trends Immunol. 12, 610–619 (2013).

    Article  Google Scholar 

  38. Diercks, A. & Aderem, A. Curr. Top. Microbiol. Immunol. 363, 1–19 (2013).

    CAS  PubMed  Google Scholar 

  39. Amit, I., Regev, A. & Hacohen, N. Nat. Rev. Immunol. 11, 873–880 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Heng, T.S.P. et al. Nat. Immunol. 9, 1091–1094 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Felix Meissner or Matthias Mann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meissner, F., Mann, M. Quantitative shotgun proteomics: considerations for a high-quality workflow in immunology. Nat Immunol 15, 112–117 (2014). https://doi.org/10.1038/ni.2781

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2781

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research