Proteomics based on high-resolution mass spectrometry has become a powerful tool for the analysis of protein abundance, modifications and interactions. Here we describe technical aspects of proteomics workflows, instrumentation as well as computational considerations to obtain high-quality proteomics data.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
A genetic engineering strategy for editing near-infrared-II fluorophores
Nature Communications Open Access 23 May 2022
-
Clinical proteomics for prostate cancer: understanding prostate cancer pathology and protein biomarkers for improved disease management
Clinical Proteomics Open Access 20 November 2020
-
Unbiased Quantitative Proteomics Reveals a Crucial Role of the Allergen Context for the Activation of Human Dendritic Cells
Scientific Reports Open Access 30 November 2017
Access options
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Aebersold, R. & Mann, M. Nature 422, 198–207 (2003).
Altelaar, A.F., Munoz, J. & Heck, A.J. Nat. Rev. Genet. 14, 35–48 (2013).
Mann, M., Kulak, N.A., Nagaraj, N. & Cox, J. Mol. Cell 49, 583–590 (2013).
Cutillas, P.R. & Timms, J.F. Methods Mol. Biol. 658, 1–357 (2010).
Bantscheff, M., Lemeer, S., Savitski, M.M. & Kuster, B. Anal. Bioanal. Chem. 404, 939–965 (2012).
Leon, I.R., Schwammle, V., Jensen, O.N. & Sprenger, R.R. Mol. Cell. Proteomics 12, 2992–3005 (2013).
Sandra, K. et al. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 866, 48–63 (2008).
Nagaraj, N. et al. Mol. Cell. Proteomics 11, M111013722 (2012).
Scigelova, M. & Makarov, A. Proteomics 6 (suppl. 2), 16–21 (2006).
Ens, W. & Standing, K.G. Methods Enzymol. 402, 49–78 (2005).
Lange, V., Picotti, P., Domon, B. & Aebersold, R. Mol. Syst. Biol. 4, 222 (2008).
Peterson, A.C., Russell, J.D., Bailey, D.J., Westphall, M.S. & Coon, J.J. Mol. Cell. Proteomics 11, 1475–1488 (2012).
Olsen, J.V. et al. Nat. Methods 4, 709–712 (2007).
Mikesh, L.M. et al. Biochim. Biophys. Acta 1764, 1811–1822 (2006).
Luber, C.A. et al. Immunity 32, 279–289 (2010).
Hettinger, J. et al. Nat. Immunol. 14, 821–830 (2013).
Meissner, F., Scheltema, R.A., Mollenkopf, H.J. & Mann, M. Science 340, 475–478 (2013).
Gupta, N. et al. Nat. Immunol. 7, 625–633 (2006).
Trost, M. et al. Immunity 30, 143–154 (2009).
Gingras, A.C., Gstaiger, M., Raught, B. & Aebersold, R. Nat. Rev. Mol. Cell Biol. 8, 645–654 (2007).
Pichlmair, A. et al. Nature 487, 486–490 (2012).
Li, S., Wang, L., Berman, M., Kong, Y.Y. & Dorf, M.E. Immunity 35, 426–440 (2011).
Plasman, K., Van Damme, P. & Gevaert, K. Curr. Opin. Chem. Biol. 17, 66–72 (2013).
Navarro, M.N., Goebel, J., Feijoo-Carnero, C., Morrice, N. & Cantrell, D.A. Nat. Immunol. 12, 352–361 (2011).
Chevrier, N. et al. Cell 147, 853–867 (2011).
Hoppes, R., Ekkebus, R., Schumacher, T.N. & Ovaa, H. J. Proteomics 73, 1945–1953 (2010).
Altelaar, A.F. & Heck, A.J. Curr. Opin. Chem. Biol. 16, 206–213 (2012).
Ong, S.E. et al. Mol. Cell. Proteomics 1, 376–386 (2002).
Howden, A.J. et al. Nat. Methods 10, 343–346 (2013).
Geiger, T. et al. Nat. Protoc. 6, 147–157 (2011).
Trudgian, D.C. et al. Proteomics 11, 2790–2797 (2011).
Cox, J. & Mann, M. Nat. Biotechnol. 26, 1367–1372 (2008).
Sadygov, R.G., Cociorva, D. & Yates, J.R. III . Nat. Methods 1, 195–202 (2004).
Elias, J.E. & Gygi, S.P. Nat. Methods 4, 207–214 (2007).
Bradshaw, R.A., Burlingame, A.L., Carr, S. & Aebersold, R. Mol. Cell. Proteomics 5, 787–788 (2006).
Olsen, J.V. & Mann, M. Sci. Signal. 4, pe7 (2011).
Rebsamen, M., Kandasamy, R.K. & Superti-Furga, G. Trends Immunol. 12, 610–619 (2013).
Diercks, A. & Aderem, A. Curr. Top. Microbiol. Immunol. 363, 1–19 (2013).
Amit, I., Regev, A. & Hacohen, N. Nat. Rev. Immunol. 11, 873–880 (2011).
Heng, T.S.P. et al. Nat. Immunol. 9, 1091–1094 (2008).
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Meissner, F., Mann, M. Quantitative shotgun proteomics: considerations for a high-quality workflow in immunology. Nat Immunol 15, 112–117 (2014). https://doi.org/10.1038/ni.2781
Published:
Issue Date:
DOI: https://doi.org/10.1038/ni.2781
This article is cited by
-
A genetic engineering strategy for editing near-infrared-II fluorophores
Nature Communications (2022)
-
Clinical proteomics for prostate cancer: understanding prostate cancer pathology and protein biomarkers for improved disease management
Clinical Proteomics (2020)
-
Immunogenetic factors driving formation of ultralong VH CDR3 in Bos taurus antibodies
Cellular & Molecular Immunology (2019)
-
Proteomic study revealed cellular assembly and lipid metabolism dysregulation in sepsis secondary to community-acquired pneumonia
Scientific Reports (2017)
-
Regulation of intestinal homeostasis by the ulcerative colitis-associated gene RNF186
Mucosal Immunology (2017)