Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

GATA-3 regulates the self-renewal of long-term hematopoietic stem cells

Abstract

The transcription factor GATA-3 is expressed and required for differentiation and function throughout the T lymphocyte lineage. Despite evidence it may also be expressed in multipotent hematopoietic stem cells (HSCs), any role for GATA-3 in these cells has remained unclear. Here we found GATA-3 was in the cytoplasm in quiescent long-term stem cells from steady-state bone marrow but relocated to the nucleus when HSCs cycled. Relocation depended on signaling via the mitogen-activated protein kinase p38 and was associated with a diminished capacity for long-term reconstitution after transfer into irradiated mice. Deletion of Gata3 enhanced the repopulating capacity and augmented the self-renewal of long-term HSCs in cell-autonomous fashion without affecting the cell cycle. Our observations position GATA-3 as a regulator of the balance between self-renewal and differentiation in HSCs that acts downstream of the p38 signaling pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gata3 is actively transcribed in LT-HSCs but not in IT-HSCs.
Figure 2: GATA-3 is expressed in LT-HSCs but not in IT-HSCs.
Figure 3: GATA-3 relocalizes to the nucleus in cycling cells and the effect is inhibited by inhibitors of p38α.
Figure 4: Treatment with poly(I:C) induces HSC cycling and relocalization of GATA-3 in vivo and reduces the long-term reconstituting capacity of wild-type LSKRα2lo cells.
Figure 5: Gata3 excision has little effect on steady-state bone marrow and blood populations.
Figure 6: Regenerative activity and self-renewal are enhanced in vivo and in vitro after deletion of Gata3.

Similar content being viewed by others

References

  1. Ho, I.C., Tai, T.S. & Pai, S.Y. GATA3 and the T-cell lineage: essential functions before and after T-helper-2-cell differentiation. Nat. Rev. Immunol. 9, 125–135 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Lange, A. et al. Classical nuclear localization signals: definition, function, and interaction with importin α. J. Biol. Chem. 282, 5101–5105 (2007).

    CAS  PubMed  Google Scholar 

  3. Maneechotesuwan, K. et al. Regulation of Th2 cytokine genes by p38 MAPK-mediated phosphorylation of GATA-3. J. Immunol. 178, 2491–2498 (2007).

    CAS  PubMed  Google Scholar 

  4. Zhong, J.F. et al. Gene expression profile of murine long-term reconstituting vs. short-term reconstituting hematopoietic stem cells. Proc. Natl. Acad. Sci. USA 102, 2448–2453 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kent, D.G. et al. Prospective isolation and molecular characterization of hematopoietic stem cells with durable self-renewal potential. Blood 113, 6342–6350 (2009).

    CAS  PubMed  Google Scholar 

  6. Benveniste, P. et al. Intermediate-term hematopoietic stem cells with extended but time-limited reconstitution potential. Cell Stem Cell 6, 48–58 (2010).

    CAS  PubMed  Google Scholar 

  7. Hosoya, T. et al. GATA-3 is required for early T lineage progenitor development. J. Exp. Med. 206, 2987–3000 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Buza-Vidas, N. et al. GATA3 is redundant for maintenance and self-renewal of hematopoietic stem cells. Blood 118, 1291–1293 (2011).

    CAS  PubMed  Google Scholar 

  9. Ku, C.J., Hosoya, T., Maillard, I. & Engel, J.D. GATA-3 regulates hematopoietic stem cell maintenance and cell cycle entry. Blood 119, 2242–2251 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Benveniste, P., Cantin, C., Hyam, D. & Iscove, N.N. Hematopoietic stem cells engraft in mice with absolute efficiency. Nat. Immunol. 4, 708–713 (2003).

    CAS  PubMed  Google Scholar 

  11. Kiel, M.J. et al. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121, 1109–1121 (2005).

    CAS  PubMed  Google Scholar 

  12. Wilson, A. et al. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 135, 1118–1129 (2008).

    CAS  PubMed  Google Scholar 

  13. Foudi, A. et al. Analysis of histone 2B-GFP retention reveals slowly cycling hematopoietic stem cells. Nat. Biotechnol. 27, 84–90 (2009).

    CAS  PubMed  Google Scholar 

  14. Dykstra, B. et al. Long-term propagation of distinct hematopoietic differentiation programs in vivo. Cell Stem Cell 1, 218–229 (2007).

    CAS  PubMed  Google Scholar 

  15. Trumpp, A., Essers, M. & Wilson, A. Awakening dormant haematopoietic stem cells. Nat. Rev. Immunol. 10, 201–209 (2010).

    CAS  PubMed  Google Scholar 

  16. Grote, D., Souabni, A., Busslinger, M. & Bouchard, M. Pax 2/8-regulated Gata 3 expression is necessary for morphogenesis and guidance of the nephric duct in the developing kidney. Development 133, 53–61 (2006).

    CAS  PubMed  Google Scholar 

  17. Wang, Y., Kellner, J., Liu, L. & Zhou, D. Inhibition of p38 mitogen-activated protein kinase promotes ex vivo hematopoietic stem cell expansion. Stem Cells Dev. 20, 1143–1152 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Adams, J.L. et al. Pyrimidinylimidazole inhibitors of CSBP/p38 kinase demonstrating decreased inhibition of hepatic cytochrome P450 enzymes. Bioorg. Med. Chem. Lett. 8, 3111–3116 (1998).

    CAS  PubMed  Google Scholar 

  19. Adams, J.L. et al. Pyrimidinylimidazole inhibitors of p38: cyclic N-1 imidazole substituents enhance p38 kinase inhibition and oral activity. Bioorg. Med. Chem. Lett. 11, 2867–2870 (2001).

    CAS  PubMed  Google Scholar 

  20. Boehm, J.C. et al. Phenoxypyrimidine inhibitors of p38alpha kinase: synthesis and statistical evaluation of the p38 inhibitory potencies of a series of 1-(piperidin-4-yl)-4-(4-fluorophenyl)-5-(2-phenoxypyrimidin-4-yl) imidazoles. Bioorg. Med. Chem. Lett. 11, 1123–1126 (2001).

    CAS  PubMed  Google Scholar 

  21. Yamashita, M., Chattopadhyay, S., Fensterl, V., Zhang, Y. & Sen, G.C. A TRIF-independent branch of TLR3 signaling. J. Immunol. 188, 2825–2833 (2012).

    CAS  PubMed  Google Scholar 

  22. Essers, M.A. et al. IFNalpha activates dormant haematopoietic stem cells in vivo. Nature 458, 904–908 (2009).

    CAS  PubMed  Google Scholar 

  23. Spangrude, G.J. & Johnson, G.R. Resting and activated subsets of mouse multipotent hematopoietic stem cells. Proc. Natl. Acad. Sci. USA 87, 7433–7437 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Sato, T. et al. Interferon regulatory factor-2 protects quiescent hematopoietic stem cells from type I interferon-dependent exhaustion. Nat. Med. 15, 696–700 (2009).

    CAS  PubMed  Google Scholar 

  25. Grote, D. et al. Gata3 acts downstream of β-catenin signaling to prevent ectopic metanephric kidney induction. PLoS Genet. 4, e1000316 (2008).

    PubMed  PubMed Central  Google Scholar 

  26. Pawliuk, R., Eaves, C. & Humphries, R.K. Evidence of both ontogeny and transplant dose-regulated expansion of hematopoietic stem cells in vivo. Blood 88, 2852–2858 (1996).

    CAS  PubMed  Google Scholar 

  27. Iscove, N.N. & Nawa, K. Hematopoietic stem cells expand during serial transplantation in vivo without apparent exhaustion. Curr. Biol. 7, 805–808 (1997).

    CAS  PubMed  Google Scholar 

  28. Kouros-Mehr, H., Slorach, E.M., Sternlicht, M.D. & Werb, Z. GATA-3 maintains the differentiation of the luminal cell fate in the mammary gland. Cell 127, 1041–1055 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Eeckhoute, J. et al. Positive cross-regulatory loop ties GATA-3 to estrogen receptor alpha expression in breast cancer. Cancer Res. 67, 6477–6483 (2007).

    CAS  PubMed  Google Scholar 

  30. Kong, S.L., Li, G., Loh, S.L., Sung, W.K. & Liu, E.T. Cellular reprogramming by the conjoint action of ERalpha, FOXA1, and GATA3 to a ligand-inducible growth state. Mol. Syst. Biol. 7, 526 (2011).

    PubMed  PubMed Central  Google Scholar 

  31. Sérandour, A.A. et al. Epigenetic switch involved in activation of pioneer factor FOXA1-dependent enhancers. Genome Res. 21, 555–565 (2011).

    PubMed  PubMed Central  Google Scholar 

  32. Zaret, K.S. & Carroll, J.S. Pioneer transcription factors: establishing competence for gene expression. Genes Dev. 25, 2227–2241 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Harrison, D.E. & Lerner, C.P. Most primitive hematopoietic stem cells are stimulated to cycle rapidly after treatment with 5-fluorouracil. Blood 78, 1237–1240 (1991).

    CAS  PubMed  Google Scholar 

  34. Quesniaux, V.F. et al. Use of 5-fluorouracil to analyze the effect of macrophage inflammatory protein-1α on long-term reconstituting stem cells in vivo. Blood 81, 1497–1504 (1993).

    CAS  PubMed  Google Scholar 

  35. Randall, T.D. & Weissman, I.L. Phenotypic and functional changes induced at the clonal level in hematopoietic stem cells after 5-fluorouracil treatment. Blood 89, 3596–3606 (1997).

    CAS  PubMed  Google Scholar 

  36. Barone, F.C. et al. SB 239063, a second-generation p38 mitogen-activated protein kinase inhibitor, reduces brain injury and neurological deficits in cerebral focal ischemia. J. Pharmacol. Exp. Ther. 296, 312–321 (2001).

    CAS  PubMed  Google Scholar 

  37. Jia, Y.T. et al. Activation of p38 MAPK by reactive oxygen species is essential in a rat model of stress-induced gastric mucosal injury. J. Immunol. 179, 7808–7819 (2007).

    CAS  PubMed  Google Scholar 

  38. Pisegna, S. et al. p38 MAPK activation controls the TLR3-mediated up-regulation of cytotoxicity and cytokine production in human NK cells. Blood 104, 4157–4164 (2004).

    CAS  PubMed  Google Scholar 

  39. Bohnenkamp, H.R., Papazisis, K.T., Burchell, J.M. & Taylor-Papadimitriou, J. Synergism of Toll-like receptor-induced interleukin-12p70 secretion by monocyte-derived dendritic cells is mediated through p38 MAPK and lowers the threshold of T-helper cell type 1 responses. Cell. Immunol. 247, 72–84 (2007).

    CAS  PubMed  Google Scholar 

  40. Kapur, R., Chandra, S., Cooper, R., McCarthy, J. & Williams, D.A. Role of p38 and ERK MAP kinase in proliferation of erythroid progenitors in response to stimulation by soluble and membrane isoforms of stem cell factor. Blood 100, 1287–1293 (2002).

    CAS  PubMed  Google Scholar 

  41. Katsoulidis, E. et al. Role of the p38 mitogen-activated protein kinase pathway in cytokine-mediated hematopoietic suppression in myelodysplastic syndromes. Cancer Res. 65, 9029–9037 (2005).

    CAS  PubMed  Google Scholar 

  42. Ito, K. et al. Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat. Med. 12, 446–451 (2006).

    CAS  PubMed  Google Scholar 

  43. Trevisan, M. & Iscove, N.N. Phenotypic analysis of murine long-term hemopoietic reconstituting cells quantitated competitively in vivo and comparison with more advanced colony-forming progeny. J. Exp. Med. 181, 93–103 (1995).

    CAS  PubMed  Google Scholar 

  44. Brady, G. et al. Analysis of gene expression in a complex differentiation hierarchy by global amplification of cDNA from single cells. Curr. Biol. 5, 909–922 (1995).

    CAS  PubMed  Google Scholar 

  45. Billia, F., Barbara, M., McEwen, J., Trevisan, M. & Iscove, N.N. Resolution of pluripotential intermediates in murine hematopoietic differentiation by global complementary DNA amplification from single cells: confirmation of assignments by expression profiling of cytokine receptor transcripts. Blood 97, 2257–2268 (2001).

    CAS  PubMed  Google Scholar 

  46. Hardy, R.R., Carmack, C.E., Shinton, S.A., Kemp, J.D. & Hayakawa, K. Resolution and characterization of pro-B and pre-pro-B cell stages in normal mouse bone marrow. 1991. J. Immunol. 189, 3271–3283 (2012).

    CAS  PubMed  Google Scholar 

  47. Schwarz, B.A. et al. Selective thymus settling regulated by cytokine and chemokine receptors. J. Immunol. 178, 2008–2017 (2007).

    CAS  PubMed  Google Scholar 

  48. Iscove, N.N. et al. Representation is faithfully preserved in global cDNA amplified exponentially from sub-picogram quantities of mRNA. Nat. Biotechnol. 20, 940–943 (2002).

    CAS  PubMed  Google Scholar 

  49. Muro, E.M. et al. Identification of gene 3′ ends by automated EST cluster analysis. Proc. Natl. Acad. Sci. USA 105, 20286–20290 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank F. Melchers (Max Planck Institute for Infection Biology) for conditioned medium from transduced mouse cells that produce IL-7; P.A. Penttilä for assistance with flow cytometry and M.F. Monroy for help with animal procedures. Supported by the Terry Fox Foundation, the Canadian Cancer Research Institute, the Canadian Institutes of Health Research, the Stem Cell Network, the Fondation de France (C.F.), the Fondation pour la Recherche Médicale (C.F.), the McEwen Centre for Regenerative Medicine, the Princess Margaret Hospital Foundation, the Campbell Family Institute for Cancer Research and the Ontario Ministry of Health and Long Term Care. The views expressed do not necessarily reflect those of the Ontario Ministry of Health and Long Term Care.

Author information

Authors and Affiliations

Authors

Contributions

C.F. did most of the experimental work; C.F. and N.N.I. wrote the manuscript; S.J., G.T., C.J.P., P.B. and J.-C.Z.-P. contributed some data elements; R.H. and M.B. provided technical support; and A.S. and M.B. engineered and supplied the Gata3 mutant mice and helped write the manuscript.

Corresponding author

Correspondence to Norman N Iscove.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1 (PDF 118 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frelin, C., Herrington, R., Janmohamed, S. et al. GATA-3 regulates the self-renewal of long-term hematopoietic stem cells. Nat Immunol 14, 1037–1044 (2013). https://doi.org/10.1038/ni.2692

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2692

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing